The ecological drivers of variation in global language diversity, bioRxiv, 2018-09-26

AbstractLanguage diversity is distributed unevenly over the globe. Why do some areas have so many different languages and other areas so few? Intriguingly, patterns of language diversity resemble biodiversity patterns, leading to suggestions that similar mechanisms may underlie both linguistic and biological diversification. Here we present the first global analysis of language diversity that identifies the relative importance of two key ecological mechanisms suggested to promote language diversification - isolation and ecological risk - after correcting for spatial autocorrelation and phylogenetic non-independence. We find significant effects of climate on language diversity consistent with the ecological risk hypothesis that areas of high year-round productivity lead to more languages by supporting human cultural groups with smaller distributions. Climate has a much stronger effect on language diversity than landscape features that might contribute to isolation of cultural groups, such as altitudinal variation, river density, or landscape roughness. The association between biodiversity and language diversity appears to be an incidental effect of their covariation with climate, rather than a causal link between the two. While climate and landscape provide strong explanatory signal for variation in language diversity, we identify a number of areas of high unexplained language diversity, with more languages than would be predicted from environmental features alone; notably New Guinea, the Himalayan foothills, West Africa, and Mesoamerica. Additional processes may be at play in generating higher than expected language diversity in these regions.

biorxiv ecology 0-100-users 2018

The genetics of university success, Scientific Reports, 2018-09-25

University success, which includes enrolment in and achievement at university, as well as quality of the university, have all been linked to later earnings, health and wellbeing. However, little is known about the causes and correlates of differences in university-level outcomes. Capitalizing on both quantitative and molecular genetic data, we perform the first genetically sensitive investigation of university success with a UK-representative sample of 3,000 genotyped individuals and 3,000 twin pairs. Twin analyses indicate substantial additive genetic influence on university entrance exam achievement (57%), university enrolment (51%), university quality (57%) and university achievement (46%). We find that environmental effects tend to be non-shared, although the shared environment is substantial for university enrolment. Furthermore, using multivariate twin analysis, we show moderate to high genetic correlations between university success variables (0.27–0.76). Analyses using DNA alone also support genetic influence on university success. Indeed, a genome-wide polygenic score, derived from a 2016 genome-wide association study of years of education, predicts up to 5% of the variance in each university success variable. These findings suggest young adults select and modify their educational experiences in part based on their genetic propensities and highlight the potential for DNA-based predictions of real-world outcomes, which will continue to increase in predictive power.

scientific reports genetics 500+-users 2018

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo