Polygenicity of complex traits is explained by negative selection, bioRxiv, 2018-09-19
Complex traits and common disease are highly polygenic thousands of common variants are causal, and their effect sizes are almost always small. Polygenicity could be explained by negative selection, which constrains common-variant effect sizes and may reshape their distribution across the genome. We refer to this phenomenon as flattening, as genetic signal is flattened relative to the underlying biology. We introduce a mathematical definition of polygenicity, the effective number of associated SNPs, and a robust statistical method to estimate it. This definition of polygenicity differs from the number of causal SNPs, a standard definition; it depends strongly on SNPs with large effects. In analyses of 33 complex traits (average N=361k), we determined that common variants are ∼4x more polygenic than low-frequency variants, consistent with pervasive flattening. Moreover, functionally important regions of the genome have increased polygenicity in proportion to their increased heritability, implying that heritability enrichment reflects differences in the number of associations rather than their magnitude (which is constrained by selection). We conclude that negative selection constrains the genetic signal of biologically important regions and genes, reshaping genetic architecture.
biorxiv genetics 100-200-users 2018RELION-3 new tools for automated high-resolution cryo-EM structure determination, bioRxiv, 2018-09-19
AbstractHere, we describe the third major release of relion. CPU-based vector acceleration has been added in addition to GPU support, which provides flexibility in use of resources and avoids memory limitations. Reference-free autopicking with Laplacian-of-Gaussian filtering and execution of jobs from python allows non-interactive processing during acquisition, including 2D-classification, de novo model generation and 3D-classification. Perparticle refinement of CTF parameters and correction of estimated beam tilt provides higher-resolution reconstructions when particles are at different heights in the ice, andor coma-free alignment has not been optimal. Ewald sphere curvature correction improves resolution for large particles. We illustrate these developments with publicly available data sets together with a Bayesian approach to beam-induced motion correction it leads to resolution improvements of 0.2-0.7 Å compared to previous relion versions.
biorxiv biophysics 100-200-users 2018Genomic prediction of cognitive traits in childhood and adolescence, bioRxiv, 2018-09-18
AbstractRecent advances in genomics are producing powerful DNA predictors of complex traits, especially cognitive abilities. Here, we leveraged summary statistics from the most recent genome-wide association studies of intelligence and educational attainment to build prediction models of general cognitive ability and educational achievement. To this end, we compared the performances of multi-trait genomic and polygenic scoring methods. In a representative UK sample of 7,026 children at age 12 and 16, we show that we can now predict up to 11 percent of the variance in intelligence and 16 percent in educational achievement. We also show that predictive power increases from age 12 to age 16 and that genomic predictions do not differ for girls and boys. Multivariate genomic methods were effective in boosting predictive power and, even though prediction accuracy varied across polygenic scores approaches, results were similar using different multivariate and polygenic score methods. Polygenic scores for educational attainment and intelligence are the most powerful predictors in the behavioural sciences and exceed predictions that can be made from parental phenotypes such as educational attainment and occupational status.
biorxiv genomics 100-200-users 2018Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements, Nature Communications, 2018-09-18
The infant gut microbiota has a high abundance of antibiotic resistance genes (ARGs) compared to adults, even in the absence of antibiotic exposure. Here we study potential sources of infant gut ARGs by performing metagenomic sequencing of breast milk, as well as infant and maternal gut microbiomes. We find that fecal ARG and mobile genetic element (MGE) profiles of infants are more similar to those of their own mothers than to those of unrelated mothers. MGEs in mothers’ breast milk are also shared with their own infants. Termination of breastfeeding and intrapartum antibiotic prophylaxis of mothers, which have the potential to affect microbial community composition, are associated with higher abundances of specific ARGs, the composition of which is largely shaped by bacterial phylogeny in the infant gut. Our results suggest that infants inherit the legacy of past antibiotic consumption of their mothers via transmission of genes, but microbiota composition still strongly impacts the overall resistance load.
nature communications genetics 200-500-users 2018Coupled single-cell CRISPR screening and epigenomic profiling reveals causal gene regulatory networks, bioRxiv, 2018-09-17
SummaryHere we present Perturb-ATAC, a method which combines multiplexed CRISPR interference or knockout with genome-wide chromatin accessibility profiling in single cells, based on the simultaneous detection of CRISPR guide RNAs and open chromatin sites by assay of transposase-accessible chromatin with sequencing (ATAC-seq). We applied Perturb-ATAC to transcription factors (TFs), chromatin-modifying factors, and noncoding RNAs (ncRNAs) in ∼4,300 single cells, encompassing more than 63 unique genotype-phenotype relationships. Perturb-ATAC in human B lymphocytes uncovered regulators of chromatin accessibility, TF occupancy, and nucleosome positioning, and identified a hierarchical organization of TFs that govern B cell state, variation, and disease-associatedcis-regulatory elements. Perturb-ATAC in primary human epidermal cells revealed three sequential modules ofcis-elements that specify keratinocyte fate, orchestrated by the TFs JUNB, KLF4, ZNF750, CEBPA, and EHF. Combinatorial deletion of all pairs of these TFs uncovered their epistatic relationships and highlighted genomic co-localization as a basis for synergistic interactions. Thus, Perturb-ATAC is a powerful and general strategy to dissect gene regulatory networks in development and disease.Highlights<jatslist list-type=order><jatslist-item>A new method for simultaneous measurement of CRISPR perturbations and chromatin state in single cells.<jatslist-item><jatslist-item>Perturb-ATAC reveals regulatory factors that controlcis-element accessibility,trans-factor occupancy, and nucleosome positioning.<jatslist-item><jatslist-item>Perturb-ATAC reveals regulatory modules of coordinatedtrans-factor activity in B lymphoblasts.<jatslist-item><jatslist-item>Keratinocyte differentiation is orchestrated by synergistic activities of co-binding TFs oncis-elements.<jatslist-item>
biorxiv genomics 100-200-users 2018Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits, Nature Genetics, 2018-09-17
High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future.
nature genetics genetics 200-500-users 2018