High-dimensional geometry of population responses in visual cortex, bioRxiv, 2018-07-22
AbstractA neuronal population encodes information most efficiently when its activity is uncorrelated and high-dimensional, and most robustly when its activity is correlated and lower-dimensional. Here, we analyzed the correlation structure of natural image coding, in large visual cortical populations recorded from awake mice. Evoked population activity was high dimensional, with correlations obeying an unexpected power-law the nth principal component variance scaled as 1n. This was not inherited from the 1f spectrum of natural images, because it persisted after stimulus whitening. We proved mathematically that the variance spectrum must decay at least this fast if a population code is smooth, i.e. if small changes in input cannot dominate population activity. The theory also predicts larger power-law exponents for lower-dimensional stimulus ensembles, which we validated experimentally. These results suggest that coding smoothness represents a fundamental constraint governing correlations in neural population codes.
biorxiv neuroscience 200-500-users 2018A Chromosome-Scale Assembly of the En ormous (32 Gb) Axolotl Genome, bioRxiv, 2018-07-20
ABSTRACTThe axolotl (Ambystoma mexicanum) provides critical models for studying regeneration, evolution and development. However, its large genome (~32 gigabases) presents a formidable barrier to genetic analyses. Recent efforts have yielded genome assemblies consisting of thousands of unordered scaffolds that resolve gene structures, but do not yet permit large scale analyses of genome structure and function. We adapted an established mapping approach to leverage dense SNP typing information and for the first time assemble the axolotl genome into 14 chromosomes. Moreover, we used fluorescence in situ hybridization to verify the structure of these 14 scaffolds and assign each to its corresponding physical chromosome. This new assembly covers 27.3 gigabases and encompasses 94% of annotated gene models on chromosomal scaffolds. We show the assembly’s utility by resolving genome-wide orthologies between the axolotl and other vertebrates, identifying the footprints of historical introgression events that occurred during the development of axolotl genetic stocks, and precisely mapping several phenotypes including a large deletion underlying the cardiac mutant. This chromosome-scale assembly will greatly facilitate studies of the axolotl in biological research.
biorxiv genomics 0-100-users 2018Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals, Nature Genetics, 2018-07-20
Here we conducted a large-scale genetic association analysis of educational attainment in a sample of approximately 1.1 million individuals and identify 1,271 independent genome-wide-significant SNPs. For the SNPs taken together, we found evidence of heterogeneous effects across environments. The SNPs implicate genes involved in brain-development processes and neuron-to-neuron communication. In a separate analysis of the X chromosome, we identify 10 independent genome-wide-significant SNPs and estimate a SNP heritability of around 0.3% in both men and women, consistent with partial dosage compensation. A joint (multi-phenotype) analysis of educational attainment and three related cognitive phenotypes generates polygenic scores that explain 11–13% of the variance in educational attainment and 7–10% of the variance in cognitive performance. This prediction accuracy substantially increases the utility of polygenic scores as tools in research.
nature genetics genetics 500+-users 2018Classification of electrophysiological and morphological types in mouse visual cortex, bioRxiv, 2018-07-18
ABSTRACTUnderstanding the diversity of cell types in the brain has been an enduring challenge and requires detailed characterization of individual neurons in multiple dimensions. To profile morpho-electric properties of mammalian neurons systematically, we established a single cell characterization pipeline using standardized patch clamp recordings in brain slices and biocytin-based neuronal reconstructions. We built a publicly-accessible online database, the Allen Cell Types Database, to display these data sets. Intrinsic physiological and morphological properties were measured from over 1,800 neurons from the adult laboratory mouse visual cortex. Quantitative features were used to classify neurons into distinct types using unsupervised methods. We establish a taxonomy of morphologically- and electrophysiologically-defined cell types for this region of cortex with 17 e-types and 35 m-types, as well as an initial correspondence with previously-defined transcriptomic cell types using the same transgenic mouse lines.
biorxiv neuroscience 100-200-users 2018Determining cellular CTCF and cohesin abundances to constrain 3D genome models, bioRxiv, 2018-07-18
Achieving a quantitative and predictive understanding of 3D genome architecture remains a major challenge, as it requires quantitative measurements of the key proteins involved. Here we report the quantification of CTCF and cohesin, two causal regulators of topological associating domains (TADs) in mammalian cells. Extending our previous imaging studies (Hansen 2017), we estimate bounds on the density of putatively DNA loop-extruding cohesin complexes and CTCF binding site occupancy. Furthermore, co-immunoprecipitation studies of an endogenously tagged subunit (Rad21) suggest the presence of cohesin dimers andor oligomers. Finally, based on our cell lines with accurately measured protein abundances, we report a method to conveniently determine the number of molecules of any Halo-tagged protein in the cell. We anticipate that our results and the established tool for measuring cellular protein abundances will advance a more quantitative understanding of 3D genome organization, and facilitate protein quantification, key for understanding diverse biological processes.
biorxiv biophysics 100-200-users 2018