Optimization of Golden Gate assembly through application of ligation sequence-dependent fidelity and bias profiling, bioRxiv, 2018-05-15

ABSTRACTModern synthetic biology depends on the manufacture of large DNA constructs from libraries of genes, regulatory elements or other genetic parts. Type IIS restriction enzyme-dependent DNA assembly methods (e.g., Golden Gate) enable rapid one-pot, ordered, multi-fragment DNA assembly, facilitating the generation of high-complexity constructs. The order of assembly of genetic parts is determined by the ligation of flanking Watson-Crick base-paired overhangs. The ligation of mismatched overhangs leads to erroneous assembly, and the need to avoid such pairings has typically been accomplished by using small sets of empirically vetted junction pairs, limiting the number of parts that can be joined in a single reaction. Here, we report the use of a comprehensive method for profiling end-joining ligation fidelity and bias to predict highly accurate sets of connections for ligation-based DNA assembly methods. This data set allows quantification of sequence-dependent ligation efficiency and identification of mismatch-prone pairings. The ligation profile accurately predicted junction fidelity in ten-fragment Golden Gate assembly reactions, and enabled efficient assembly of a lac cassette from up to 24-fragments in a single reaction. Application of the ligation fidelity profile to inform choice of junctions thus enables highly flexible assembly design, with >20 fragments in a single reaction.

biorxiv synthetic-biology 0-100-users 2018

Whole-genome deep learning analysis reveals causal role of noncoding mutations in autism, bioRxiv, 2018-05-11

AbstractWe address the challenge of detecting the contribution of noncoding mutations to disease with a deep-learning-based framework that predicts specific regulatory effects and deleterious disease impact of genetic variants. Applying this framework to 1,790 Autism Spectrum Disorder (ASD) simplex families reveals autism disease causality of noncoding mutations by demonstrating that ASD probands harbor transcriptional (TRDs) and post-transcriptional (RRDs) regulation-disrupting mutations of significantly higher functional impact than unaffected siblings. Importantly, we detect this significant noncoding contribution at each level, transcriptional and post-transcriptional, independently and after multiple hypothesis correction. Further analysis suggests involvement of noncoding mutations in synaptic transmission and neuronal development, and reveals a convergent genetic landscape of coding and noncoding (TRD and RRD) de novo mutations in ASD. We demonstrate that sequences carrying prioritized proband de novo mutations possess transcriptional regulatory activity and drive expression differentially, and highlight a link between noncoding mutations and IQ heterogeneity in ASD probands. Our predictive genomics framework illuminates the role of noncoding mutations in ASD, prioritizes high impact transcriptional and post-transcriptional regulatory mutations for further study, and is broadly applicable to complex human diseases.

biorxiv genomics 100-200-users 2018

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo