FMRIPrep a robust preprocessing pipeline for functional MRI, bioRxiv, 2018-04-26

Preprocessing of functional MRI (fMRI) involves numerous steps to clean and standardize data before statistical analysis. Generally, researchers create ad hoc preprocessing workflows for each new dataset, building upon a large inventory of tools available for each step. The complexity of these workflows has snowballed with rapid advances in MR data acquisition and image processing techniques. We introduce fMRIPrep, an analysis-agnostic tool that addresses the challenge of robust and reproducible preprocessing for task-based and resting fMRI data. FMRIPrep automatically adapts a best-in-breed workflow to the idiosyncrasies of virtually any dataset, ensuring high-quality preprocessing with no manual intervention. By introducing visual assessment checkpoints into an iterative integration framework for software-testing, we show that fMRIPrep robustly produces high-quality results on a diverse fMRI data collection comprising participants from 54 different studies in the OpenfMRI repository. We review the distinctive features of fMRIPrep in a qualitative comparison to other preprocessing workflows. We demonstrate that fMRIPrep achieves higher spatial accuracy as it introduces less uncontrolled spatial smoothness than commonly used preprocessing tools. FMRIPrep has the potential to transform fMRI research by equipping neuroscientists with a high-quality, robust, easy-to-use and transparent preprocessing workflow which can help ensure the validity of inference and the interpretability of their results.

biorxiv bioinformatics 200-500-users 2018

Genomic SEM Provides Insights into the Multivariate Genetic Architecture of Complex Traits, bioRxiv, 2018-04-21

AbstractMethods for using GWAS to estimate genetic correlations between pairwise combinations of traits have produced “atlases” of genetic architecture. Genetic atlases reveal pervasive pleiotropy, and genome-wide significant loci are often shared across different phenotypes. We introduce genomic structural equation modeling (Genomic SEM), a multivariate method for analyzing the joint genetic architectures of complex traits. Using formal methods for modeling covariance structure, Genomic SEM synthesizes genetic correlations and SNP-heritabilities inferred from GWAS summary statistics of individual traits from samples with varying and unknown degrees of overlap. Genomic SEM can be used to identify variants with effects on general dimensions of cross-trait liability, boost power for discovery, and calculate more predictive polygenic scores. Finally, Genomic SEM can be used to identify loci that cause divergence between traits, aiding the search for what uniquely differentiates highly correlated phenotypes. We demonstrate several applications of Genomic SEM, including a joint analysis of GWAS summary statistics from five genetically correlated psychiatric traits. We identify 27 independent SNPs not previously identified in the univariate GWASs, 5 of which have been reported in other published GWASs of the included traits. Polygenic scores derived from Genomic SEM consistently outperform polygenic scores derived from GWASs of the individual traits. Genomic SEM is flexible, open ended, and allows for continuous innovations in how multivariate genetic architecture is modeled.

biorxiv genetics 100-200-users 2018

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo