Beyond Consensus Embracing Heterogeneity in Curated Neuroimaging Meta-Analysis, bioRxiv, 2017-06-14

Coordinate-based meta-analysis can provide important insights into mind-brain relationships. A popular approach for curated small-scale meta-analysis is activation likelihood estimation (ALE), which identifies brain regions consistently activated across a selected set of experiments, such as within a functional domain or mental disorder. ALE can also be utilized in meta-analytic co-activation modeling (MACM) to identify brain regions consistently co-activated with a seed region. Therefore, ALE aims to find consensus across experiments, treating heterogeneity across experiments as noise. However, heterogeneity within an ALE analysis of a functional domain might indicate the presence of functional sub-domains. Similarly, heterogeneity within a MACM analysis might indicate the involvement of a seed region in multiple co-activation patterns that are dependent on task contexts. Here, we demonstrate the use of the author-topic model to automatically determine if heterogeneities within ALE-type meta-analyses can be robustly explained by a small number of latent patterns. In the first application, the author-topic modeling of experiments involving self-generated thought (N = 179) revealed cognitive components fractionating the default network. In the second application, the author-topic model revealed that the left inferior frontal junction (IFJ) participated in multiple task-dependent co-activation patterns (N = 323). Furthermore, the author-topic model estimates compared favorably with spatial independent component analysis in both simulation and real data. Overall, the results suggest that the author-topic model is a flexible tool for exploring heterogeneity in ALE-type meta-analyses that might arise from functional sub-domains, mental disorder subtypes or task-dependent co-activation patterns. Code for this study is publicly available (httpsgithub.comThomasYeoLabCBIGtreemasterstable_projectsmeta-analysisNgo2019_AuthorTopic).

biorxiv neuroscience 0-100-users 2017

Integrating long-range connectivity information into de Bruijn graphs, bioRxiv, 2017-06-09

AbstractMotivationThe de Bruijn graph is a simple and efficient data structure that is used in many areas of sequence analysis including genome assembly, read error correction and variant calling. The data structure has a single parameter k, is straightforward to implement and is tractable for large genomes with high sequencing depth. It also enables representation of multiple samples simultaneously to facilitate comparison. However, unlike the string graph, a de Bruijn graph does not retain long range information that is inherent in the read data. For this reason, applications that rely on de Bruijn graphs can produce sub-optimal results given their input.ResultsWe present a novel assembly graph data structure the Linked de Bruijn Graph (LdBG). Constructed by adding annotations on top of a de Bruijn graph, it stores long range connectivity information through the graph. We show that with error-free data it is possible to losslessly store and recover sequence from a Linked de Bruijn graph. With assembly simulations we demonstrate that the LdBG data structure outperforms both the de Bruijn graph and the String Graph Assembler (SGA). Finally we apply the LdBG to Klebsiella pneumoniae short read data to make large (12 kbp) variant calls, which we validate using PacBio sequencing data, and to characterise the genomic context of drug-resistance genes.AvailabilityLinked de Bruijn Graphs and associated algorithms are implemented as part of McCortex, available under the MIT license at <jatsext-link xmlnsxlink=httpwww.w3.org1999xlink ext-link-type=uri xlinkhref=httphttpsgithub.commcveanmccortex>httpsgithub.commcveanmccortex<jatsext-link>.Contactturner.isaac@gmail.com.

biorxiv bioinformatics 0-100-users 2017

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo