Genetic inhibition of PCSK9, atherogenic lipoprotein concentrations, and calcific aortic valve stenosis, bioRxiv, 2019-03-02

Background Proprotein convertase subtilisinkexin type 9 (PCSK9) inhibition reduces plasma concentrations of low-density lipoprotein cholesterol (LDL-C), apolipoprotein B (apoB) and lipoprotein(a) [Lp(a)]. Atherogenic lipoprotein levels have been linked with calcific aortic valve stenosis (CAVS). Our objectives were to determine the association between variants in PCSK9 and lipoprotein-lipid levels, coronary artery disease (CAD) and CAVS, and to evaluate if PCSK9 could be implicated in aortic valve interstitial cells (VICs) calcification.Methods We built a genetic risk score weight for LDL-C levels (wGRS) using 10 independent PCSK9 single nucleotide polymorphisms and determined its association with lipoprotein-lipid levels in 9692 participants of the EPIC-Norfolk study. We investigated the association between the wGRS and CAD and CAVS in the UK Biobank, as well as the association between the PCSK9 R46L variant and CAVS in a meta-analysis of published prospective, population-based studies (Copenhagen studies, 1463 cases101,620 controls) and unpublished studies (UK Biobank, 1350 cases349,043 controls, Malmo Diet and Cancer study, 682 cases5963 controls and EPIC-Norfolk study, 508 cases20,421 controls). We evaluated PCSK9 expression and localization in explanted aortic valves by capillary Western blot and immunohistochemistry in patients with and without CAVS. Von Kossa staining was used to visualize aortic leaflet calcium deposits. PCSK9 expression under oxidative stress conditions in VICs was assessed.Results The wGRS was significantly associated with lower LDL-C and apoB (p<0.001), but not with Lp(a). In the UK Biobank, the association of PCSK9 variants with CAD were positively correlated with their effects on apoB levels. CAVS was less prevalent in carriers of the PCSK9 R46L variant [odds ratio=0.71 (95% confidence interval, 0.57-0.88), p<0.001]. PCSK9 expression was elevated in the aortic valves of patients with aortic sclerosis and CAVS compared to controls. In calcified leaflets, PCSK9 co-localized with calcium deposits. PCSK9 expression was induced by oxidative stress in VICs. Conclusion Genetic inhibition of PCSK9 is associated with lifelong reductions in the levels of non-Lp(a) apoB-containing lipoproteins as well as lower odds of CAD and CAVS. PCSK9 is abundant in fibrotic and calcified aortic leaflets. Oxidative stress increases PCSK9 expression in VICs. These results provide a rationale for performing randomized clinical trials of PCSK9 inhibition in CAVS.

biorxiv genetics 0-100-users 2019

Non-homologous end joining minimizes errors by coordinating DNA processing with ligation, bioRxiv, 2019-03-01

Genome stability requires efficient and faithful repair of DNA double-strand breaks (DSBs). The predominant DSB repair pathway in human cells is non-homologous end-joining (NHEJ), which directly ligates DNA ends1–5. Broken DNA ends at DSBs are chemically diverse, and many are not compatible for direct ligation by the NHEJ-associated DNA Ligase IV (Lig4). To solve this problem, NHEJ end-processing enzymes including polymerases and nucleases modify ends until they are ligatable. How cells regulate end processing to minimize unnecessary genomic alterations6 during repair of pathological DSBs remains unknown. Using a biochemical system that recapitulates key features of cellular NHEJ, we previously demonstrated that DNA ends are initially tethered at a distance, followed by Lig4-mediated formation of a “short-range synaptic complex” in which DNA ends are closely aligned for ligation7. Here, we show that a wide variety of end-processing activities all depend on formation of the short-range complex. Moreover, using real-time single molecule imaging, we find that end processing occurs within the short-range complex. Confining end processing to the Lig4-dependent short-range synaptic complex promotes immediate ligation of compatible ends and ensures that incompatible ends are ligated as soon as they become compatible, thereby minimizing end processing. Our results elucidate how NHEJ exploits end processing to achieve versatility while minimizing errors that cause genome instability.

biorxiv molecular-biology 0-100-users 2019

A Comprehensive Assessment of Demographic, Environmental and Host Genetic Associations with Gut Microbiome Diversity in Healthy Individuals, bioRxiv, 2019-02-28

Background The gut microbiome is an important determinant of human health. Its composition has been shown to be influenced by multiple environmental factors and likely by host genetic variation. In the framework of the Milieu Intérieur Consortium, a total of 1,000 healthy individuals of western European ancestry, with a 11 sex ratio and evenly stratified across five decades of life (age 20 - 69), were recruited. We generated 16S ribosomal RNA profiles from stool samples for 858 participants. We investigated genetic and non-genetic factors that contribute to individual differences in fecal microbiome composition.Results Among 110 demographic, clinical and environmental factors, 11 were identified as significantly correlated with α-diversity, β-diversity or abundance of specific microbial communities in multivariable models. Age and blood alanine aminotransferase levels showed the strongest associations with microbiome diversity. In total, all non-genetic factors explained 16.4% of the variance. We then searched for associations between >5 million single nucleotide polymorphisms and the same indicators of fecal microbiome diversity, including the significant non-genetic factors as covariates. No genome-wide significant associations were identified after correction for multiple testing. A small fraction of previously reported associations between human genetic variants and specific taxa could be replicated in our cohort, while no replication was observed for any of the diversity metrics.Conclusion In a well-characterized cohort of healthy individuals, we identified several non-genetic variables associated with fecal microbiome diversity. In contrast, host genetics only had a negligible influence. Demographic and environmental factors are thus the main contributors to fecal microbiome composition in healthy individuals.

biorxiv genomics 0-100-users 2019

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo