Whole genome sequencing and assembly of a Caenorhabditis elegans genome with complex genomic rearrangements using the MinION sequencing device, bioRxiv, 2017-01-09

ABSTRACTAdvances in 3rd generation sequencing have opened new possibilities for ‘benchtop’ whole genome sequencing. The MinION is a portable device that uses nanopore technology and can sequence long DNA molecules. MinION long reads are well suited for sequencing and de novo assembly of complex genomes with large repetitive elements. Long reads also facilitate the identification of complex genomic rearrangements such as those observed in tumor genomes. To assess the feasibility of the de novo assembly of large complex genomes using both MinION and Illumina platforms, we sequenced the genome of a Caenorhabditis elegans strain that contains a complex acetaldehyde-induced rearrangement and a biolistic bombardment-mediated insertion of a GFP containing plasmid. Using ∼5.8 gigabases of MinION sequence data, we were able to assemble a C. elegans genome containing 145 contigs (N50 contig length = 1.22 Mb) that covered >99% of the 100,286,401 bp reference genome. In contrast, using ∼8.04 gigabases of Illumina sequence data, we were able to assemble a C. elegans genome in 38,645 contigs (N50 contig length = ∼26 kb) containing 117 Mb. From the MinION genome assembly we identified the complex structures of both the acetaldehyde-induced mutation and the biolistic-mediated insertion. To date, this is the largest genome to be assembled exclusively from MinION data and is the first demonstration that the long reads of MinION sequencing can be used for whole genome assembly of large (100 Mb) genomes and the elucidation of complex genomic rearrangements.

biorxiv genomics 100-200-users 2017

Neural precursors of deliberate and arbitrary decisions in the study of voluntary action, bioRxiv, 2017-01-02

AbstractThe readiness potential (RP)—a key ERP correlate of upcoming action—is known to precede subjects’ reports of their decision to move. Some view this as evidence against a causal role for consciousness in human decision-making and thus against free-will. Yet those studies focused on arbitrary decisions—purposeless, unreasoned, and without consequences. It remains unknown to what degree the RP generalizes to deliberate, more ecological decisions. We directly compared deliberate and arbitrary decision-making during a $1000-donation task to non-profit organizations. While we found the expected RPs for arbitrary decisions, they were strikingly absent for deliberate ones. Our results and drift-diffusion model are congruent with the RP representing accumulation of noisy, random fluctuations that drive arbitrary—but not deliberate—decisions. They further point to different neural mechanisms underlying deliberate and arbitrary decisions, challenging the generalizability of studies that argue for no causal role for consciousness in decision-making to real-life decisions.Significance StatementThe extent of human free will has been debated for millennia. Previous studies demonstrated that neural precursors of action—especially the readiness potential—precede subjects’ reports of deciding to move. Some viewed this as evidence against free-will. However, these experiments focused on arbitrary decisions—e.g., randomly raising the left or right hand. We directly compared deliberate (actual $1000 donations to NPOs) and arbitrary decisions, and found readiness potentials before arbitrary decisions, but—critically—not before deliberate decisions. This supports the interpretation of readiness potentials as byproducts of accumulation of random fluctuations in arbitrary but not deliberate decisions and points to different neural mechanisms underlying deliberate and arbitrary choice. Hence, it challenges the generalizability of previous results from arbitrary to deliberate decisions.

biorxiv neuroscience 100-200-users 2017

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo