An evaluation of the accuracy and speed of metagenome analysis tools, bioRxiv, 2015-04-10
Metagenome studies are becoming increasingly widespread, yielding important insights into microbial communities covering diverse environments from terrestrial and aquatic ecosystems to human skin and gut. With the advent of high-throughput sequencing platforms, the use of large scale shotgun sequencing approaches is now commonplace. However, a thorough independent benchmark comparing state-of-the-art metagenome analysis tools is lacking. Here, we present a benchmark where the most widely used tools are tested on complex, realistic data sets. Our results clearly show that the most widely used tools are not necessarily the most accurate, that the most accurate tool is not necessarily the most time consuming, and that there is a high degree of variability between available tools. These findings are important as the conclusions of any metagenomics study are affected by errors in the predicted community composition. Data sets and results are freely available from httpwww.ucbioinformatics.orgmetabenchmark.html
biorxiv bioinformatics 100-200-users 2015Eight thousand years of natural selection in Europe, bioRxiv, 2015-03-15
The arrival of farming in Europe around 8,500 years ago necessitated adaptation to new environments, pathogens, diets, and social organizations. While indirect evidence of adaptation can be detected in patterns of genetic variation in present-day people, ancient DNA makes it possible to witness selection directly by analyzing samples from populations before, during and after adaptation events. Here we report the first genome-wide scan for selection using ancient DNA, capitalizing on the largest genome-wide dataset yet assembled 230 West Eurasians dating to between 6500 and 1000 BCE, including 163 with newly reported data. The new samples include the first genome-wide data from the Anatolian Neolithic culture, who we show were members of the population that was the source of Europe's first farmers, and whose genetic material we extracted by focusing on the DNA-rich petrous bone. We identify genome-wide significant signatures of selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.
biorxiv genetics 100-200-users 2015A complete bacterial genome assembled de novo using only nanopore sequencing data, bioRxiv, 2015-02-20
A method for de novo assembly of data from the Oxford Nanopore MinION instrument is presented which is able to reconstruct the sequence of an entire bacterial chromosome in a single contig. Initially, overlaps between nanopore reads are detected. Reads are then subjected to one or more rounds of error correction by a multiple alignment process employing partial order graphs. After correction, reads are assembled using the Celera assembler. Finally, the assembly is polished using signal-level data from the nanopore employing a novel hidden Markov model. We show that this method is able to assemble nanopore reads from Escherichia coli K-12 MG1655 into a single contig of length 4.6Mb permitting a full reconstruction of gene order. The resulting draft assembly has 98.4% nucleotide identity compared to the finished reference genome. After polishing the assembly with our signal-level HMM, the nucleotide identity is improved to 99.4%. We show that MinION sequencing data can be used to reconstruct genomes without the need for a reference sequence or data from other sequencing platforms.
biorxiv bioinformatics 100-200-users 2015Massive migration from the steppe is a source for Indo-European languages in Europe, bioRxiv, 2015-02-11
We generated genome-wide data from 69 Europeans who lived between 8,000-3,000 years ago by enriching ancient DNA libraries for a target set of almost four hundred thousand polymorphisms. Enrichment of these positions decreases the sequencing required for genome-wide ancient DNA analysis by a median of around 250-fold, allowing us to study an order of magnitude more individuals than previous studies and to obtain new insights about the past. We show that the populations of western and far eastern Europe followed opposite trajectories between 8,000-5,000 years ago. At the beginning of the Neolithic period in Europe, ~8,000-7,000 years ago, closely related groups of early farmers appeared in Germany, Hungary, and Spain, different from indigenous hunter-gatherers, whereas Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a ~24,000 year old Siberian6. By ~6,000-5,000 years ago, a resurgence of hunter-gatherer ancestry had occurred throughout much of Europe, but in Russia, the Yamnaya steppe herders of this time were descended not only from the preceding eastern European hunter-gatherers, but from a population of Near Eastern ancestry. Western and Eastern Europe came into contact ~4,500 years ago, as the Late Neolithic Corded Ware people from Germany traced ~34 of their ancestry to the Yamnaya, documenting a massive migration into the heartland of Europe from its eastern periphery. This steppe ancestry persisted in all sampled central Europeans until at least ~3,000 years ago, and is ubiquitous in present-day Europeans. These results provide support for the theory of a steppe origin of at least some of the Indo-European languages of Europe.
biorxiv genetics 100-200-users 2015An Atlas of Genetic Correlations across Human Diseases and Traits, bioRxiv, 2015-02-09
Identifying genetic correlations between complex traits and diseases can provide useful etiological insights and help prioritize likely causal relationships. The major challenges preventing estimation of genetic correlation from genome-wide association study (GWAS) data with current methods are the lack of availability of individual genotype data and widespread sample overlap among meta-analyses. We circumvent these difficulties by introducing a technique for estimating genetic correlation that requires only GWAS summary statistics and is not biased by sample overlap. We use our method to estimate 300 genetic correlations among 25 traits, totaling more than 1.5 million unique phenotype measurements. Our results include genetic correlations between anorexia nervosa and schizophrenia body mass index and associations between educational attainment and several diseases. These results highlight the power of a polygenic modeling framework, since there currently are no genome-wide significant SNPs for anorexia nervosa and only three for educational attainment.
biorxiv genomics 100-200-users 2015Inexpensive Multiplexed Library Preparation for Megabase-Sized Genomes, bioRxiv, 2015-01-17
Whole-genome sequencing has become an indispensible tool of modern biology. However, the cost of sample preparation relative to the cost of sequencing remains high, especially for small genomes where the former is dominant. Here we present a protocol for the rapid and inexpensive preparation of hundreds of multiplexed genomic libraries for Illumina sequencing. By carrying out the Nextera tagmentation reaction in small volumes, replacing costly reagents with cheaper equivalents, and omitting unnecessary steps, we achieve a cost of library preparation of $8 per sample, approximately 6 times cheaper than the widely-used Nextera XT protocol. Furthermore, our procedure takes less than 5 hours for 96 samples and uses nanograms of genomic DNA. Many hundreds of samples can then be pooled on the same HiSeq lane via custom barcodes. Our method is especially useful for re-sequencing of large numbers of full microbial or viral genomes, including those from evolution experiments, genetic screens, and environmental samples.
biorxiv genomics 100-200-users 2015