The Future of OA A large-scale analysis projecting Open Access publication and readership, bioRxiv, 2019-10-09

Understanding the growth of open access (OA) is important for deciding funder policy, subscription allocation, and infrastructure planning. This study analyses the number of papers available as OA over time. The models includes both OA embargo data and the relative growth rates of different OA types over time, based on the OA status of 70 million journal articles published between 1950 and 2019. The study also looks at article usage data, analyzing the proportion of views to OA articles vs views to articles which are closed access. Signal processing techniques are used to model how these viewership patterns change over time. Viewership data is based on 2.8 million uses of the Unpaywall browser extension in July 2019. We found that Green, Gold, and Hybrid papers receive more views than their Closed or Bronze counterparts, particularly Green papers made available within a year of publication. We also found that the proportion of Green, Gold, and Hybrid articles is growing most quickly. In 2019- 31% of all journal articles are available as OA. - 52% of article views are to OA articles. Given existing trends, we estimate that by 2025 - 44% of all journal articles will be available as OA. - 70% of article views will be to OA articles. The declining relevance of closed access articles is likely to change the landscape of scholarly communication in the years to come.

biorxiv scientific-communication-and-education 200-500-users 2019

A proximity biotinylation map of a human cell, bioRxiv, 2019-10-08

Compartmentalization is an essential characteristic of eukaryotic cells, ensuring that cellular processes are partitioned to defined subcellular locations. High throughput microscopy1 and biochemical fractionation coupled with mass spectrometry2-6 have helped to define the proteomes of multiple organelles and macromolecular structures. However, many compartments have remained refractory to such methods, partly due to lysis and purification artefacts and poor subcompartment resolution. Recently developed proximity-dependent biotinylation approaches such as BioID and APEX provide an alternative avenue for defining the composition of cellular compartments in living cells (e.g. 7-10). Here we report an extensive BioID-based proximity map of a human cell, comprising 192 markers from 32 different compartments that identifies 35,902 unique high confidence proximity interactions and localizes 4,145 proteins expressed in HEK293 cells. The recall of our localization predictions is on par with or better than previous large-scale mass spectrometry and microscopy approaches, but with higher localization specificity. In addition to assigning compartment and subcompartment localization for many previously unlocalized proteins, our data contain fine-grained localization information that, for example, allowed us to identify proteins with novel roles in mitochondrial dynamics. As a community resource, we have created humancellmap.org, a website that allows exploration of our data in detail, and aids with the analysis of BioID experiments.

biorxiv molecular-biology 200-500-users 2019

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo