Deep Learning and Association Rule Mining for Predicting Drug Response in Cancer. A Personalised Medicine Approach, bioRxiv, 2016-08-20

ABSTRACTA major challenge in cancer treatment is predicting the clinical response to anti-cancer drugs for each individual patient. For complex diseases such as cancer, characterized by high inter-patient variance, the implementation of precision medicine approaches is dependent upon understanding the pathological processes at the molecular level. While the “omics” era provides unique opportunities to dissect the molecular features of diseases, the ability to utilize it in targeted therapeutic efforts is hindered by both the massive size and diverse nature of the “omics” data. Recent advances with Deep Learning Neural Networks (DLNNs), suggests that DLNN could be trained on large data sets to efficiently predict therapeutic responses in cancer treatment. We present the application of Association Rule Mining combined with DLNNs for the analysis of high-throughput molecular profiles of 1001 cancer cell lines, in order to extract cancer-specific signatures in the form of easily interpretable rules and use these rules as input to predict pharmacological responses to a large number of anti-cancer drugs. The proposed algorithm outperformed Random Forests (RF) and Bayesian Multitask Multiple Kernel Learning (BMMKL) classification which currently represent the state-of-the-art in drug-response prediction. Moreover, the in silico pipeline presented, introduces a novel strategy for identifying potential therapeutic targets, as well as possible drug combinations with high therapeutic potential. For the first time, we demonstrate that DLNNs trained on a large pharmacogenomics data-set can effectively predict the therapeutic response of specific drugs in different cancer types. These findings serve as a proof of concept for the application of DLNNs to predict therapeutic responsiveness, a milestone in precision medicine.

biorxiv bioinformatics 100-200-users 2016

Direct determination of diploid genome sequences, bioRxiv, 2016-08-20

ABSTRACTDetermining the genome sequence of an organism is challenging, yet fundamental to understanding its biology. Over the past decade, thousands of human genomes have been sequenced, contributing deeply to biomedical research. In the vast majority of cases, these have been analyzed by aligning sequence reads to a single reference genome, biasing the resulting analyses and, in general, failing to capture sequences novel to a given genome.Some de novo assemblies have been constructed, free of reference bias, but nearly all were constructed by merging homologous loci into single ‘consensus’ sequences, generally absent from nature. These assemblies do not correctly represent the diploid biology of an individual. In exactly two cases, true diploid de novo assemblies have been made, at great expense. One was generated using Sanger sequencing and one using thousands of clone pools.Here we demonstrate a straightforward and low-cost method for creating true diploid de novo assemblies. We make a single library from ~1 ng of high molecular weight DNA, using the 10x Genomics microfluidic platform to partition the genome. We applied this technique to seven human samples, generating low-cost HiSeq X data, then assembled these using a new ‘pushbutton’ algorithm, Supernova. Each computation took two days on a single server. Each yielded contigs longer than 100 kb, phase blocks longer than 2.5 Mb, and scaffolds longer than 15 Mb. Our method provides a scalable capability for determining the actual diploid genome sequence in a sample, opening the door to new approaches in genomic biology and medicine.

biorxiv genomics 0-100-users 2016

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo