Discrete attractor dynamics underlying selective persistent activity in frontal cortex, bioRxiv, 2017-10-16
AbstractShort-term memories link events separated in time, such as past sensation and future actions. Short-term memories are correlated with selective persistent activity, which can be maintained over seconds. In a delayed response task that requires short-term memory, neurons in mouse anterior lateral motor cortex (ALM) show persistent activity that instructs future actions. To elucidate the mechanisms underlying this persistent activity we combined intracellular and extracellular electrophysiology with optogenetic perturbations and network modeling. During the delay epoch, both membrane potential and population activity of ALM neurons funneled towards discrete endpoints related to specific movement directions. These endpoints were robust to transient shifts in ALM activity caused by optogenetic perturbations. Perturbations occasionally switched the population dynamics to the other endpoint, followed by incorrect actions. Our results are consistent with discrete attractor dynamics underlying short-term memory related to motor planning.
biorxiv neuroscience 0-100-users 2017Genomics in healthcare GA4GH looks to 2022, bioRxiv, 2017-10-16
AbstractThe Global Alliance for Genomics and Health (GA4GH), the standards-setting body in genomics for healthcare, aims to accelerate biomedical advancement globally. We describe the differences between healthcare- and research-driven genomics, discuss the implications of global, population-scale collections of human data for research, and outline mission-critical considerations in ethics, regulation, technology, data protection, and society. We present a crude model for estimating the rate of healthcare-funded genomes worldwide that accounts for the preparedness of each country for genomics, and infers a progression of cancer-related sequencing over time. We estimate that over 60 million patients will have their genome sequenced in a healthcare context by 2025. This represents a large technical challenge for healthcare systems, and a huge opportunity for research. We identify eight major practical, principled arguments to support the position that virtual cohorts of 100 million people or more would have tangible research benefits.
biorxiv genomics 100-200-users 2017A critical comparison of technologies for a plant genome sequencing project, bioRxiv, 2017-10-12
A high quality genome sequence of your model organism is an essential starting point for many studies. Old clone based methods are slow and expensive, whereas faster, cheaper short read only assemblies can be incomplete and highly fragmented, which minimises their usefulness. The last few years have seen the introduction of many new technologies for genome assembly. These new technologies and new algorithms are typically benchmarked on microbial genomes or, if they scale appropriately, human. However, plant genomes can be much more repetitive and larger than human, and plant biology makes obtaining high quality DNA free from contaminants difficult. Reflecting their challenging nature we observe that plant genome assembly statistics are typically poorer than for vertebrates. Here we compare Illumina short read, PacBio long read, 10x Genomics linked reads, Dovetail Hi-C and BioNano Genomics optical maps, singly and combined, in producing high quality long range genome assemblies of the potato species S. verrucosum. We benchmark the assemblies for completeness and accuracy, as well as DNA, compute requirements and sequencing costs. We expect our results will be helpful to other genome projects, and that these datasets will be used in benchmarking by assembly algorithm developers.
biorxiv genomics 0-100-users 2017A cancer pharmacogenomic screen powering crowd-sourced advancement of drug combination prediction, bioRxiv, 2017-10-10
AbstractThe effectiveness of most cancer targeted therapies is short lived since tumors evolve and develop resistance. Combinations of drugs offer the potential to overcome resistance, however the number of possible combinations is vast necessitating data-driven approaches to find optimal treatments tailored to a patient’s tumor. AstraZeneca carried out 11,576 experiments on 910 drug combinations across 85 cancer cell lines, recapitulating in vivo response profiles. These data, the largest openly available screen, were hosted by DREAM alongside deep molecular characterization from the Sanger Institute for a Challenge to computationally predict synergistic drug pairs and associated biomarkers. 160 teams participated to provide the most comprehensive methodological development and subsequent benchmarking to date. Winning methods incorporated prior knowledge of putative drug target interactions. For >60% of drug combinations synergy was reproducibly predicted with an accuracy matching biological replicate experiments, however 20% of drug combinations were poorly predicted by all methods. Genomic rationale for synergy predictions were identified, including antagonism unique to combined PIK3CBD inhibition with the ADAM17 inhibitor where synergy is seen with other PI3K pathway inhibitors. All data, methods and code are freely available as a resource to the community.
biorxiv bioinformatics 0-100-users 2017Assessment of batch-correction methods for scRNA-seq data with a new test metric, bioRxiv, 2017-10-10
AbstractSingle-cell transcriptomics is a versatile tool for exploring heterogeneous cell populations. As with all genomics experiments, batch effects can hamper data integration and interpretation. The success of batch effect correction is often evaluated by visual inspection of dimension-reduced representations such as principal component analysis. This is inherently imprecise due to the high number of genes and non-normal distribution of gene expression. Here, we present a k-nearest neighbour batch effect test (kBET, <jatsext-link xmlnsxlink=httpwww.w3.org1999xlink ext-link-type=uri xlinkhref=httpsgithub.comtheislabkBET>httpsgithub.comtheislabkBET<jatsext-link>) to quantitatively measure batch effects. kBET is easier to interpret, more sensitive and more robust than visual evaluation and other measures of batch effects. We use kBET to assess commonly used batch regression and normalisation approaches, and quantify the extent to which they remove batch effects while preserving biological variability. Our results illustrate that batch correction based on log-transformation or scran pooling followed by ComBat reduced the batch effect while preserving structure across data sets. Finally we show that kBET can pinpoint successful data integration methods across multiple data sets, in this case from different publications all charting mouse embryonic development. This has important implications for future data integration efforts, which will be central to projects such as the Human Cell Atlas where data for the same tissue may be generated in multiple locations around the world.[Before final publication, we will upload the R package to Bioconductor]
biorxiv bioinformatics 0-100-users 2017High-Precision Automated Reconstruction of Neurons with Flood-filling Networks, bioRxiv, 2017-10-10
AbstractReconstruction of neural circuits from volume electron microscopy data requires the tracing of complete cells including all their neurites. Automated approaches have been developed to perform the tracing, but without costly human proofreading their error rates are too high to obtain reliable circuit diagrams. We present a method for automated segmentation that, like the majority of previous efforts, employs convolutional neural networks, but contains in addition a recurrent pathway that allows the iterative optimization and extension of the reconstructed shape of individual neural processes. We used this technique, which we call flood-filling networks, to trace neurons in a data set obtained by serial block-face electron microscopy from a male zebra finch brain. Our method achieved a mean error-free neurite path length of 1.1 mm, an order of magnitude better than previously published approaches applied to the same dataset. Only 4 mergers were observed in a neurite test set of 97 mm path length.
biorxiv neuroscience 0-100-users 2017