Fast and Accurate Genomic Analyses using Genome Graphs, bioRxiv, 2017-09-28

AbstractThe human reference genome serves as the foundation for genomics by providing a scaffold for alignment of sequencing reads, but currently only reflects a single consensus haplotype, which impairs read alignment and downstream analysis accuracy. Reference genome structures incorporating known genetic variation have been shown to improve the accuracy of genomic analyses, but have so far remained computationally prohibitive for routine large-scale use. Here we present a graph genome implementation that enables read alignment across 2,800 diploid genomes encompassing 12.6 million SNPs and 4.0 million indels. Our Graph Genome Pipeline requires 6.5 hours to process a 30x coverage WGS sample on a system with 36 CPU cores compared with 11 hours required by the GATK Best Practices pipeline. Using complementary benchmarking experiments based on real and simulated data, we show that using a graph genome reference improves read mapping sensitivity and produces a 0.5% increase in variant calling recall, or about 20,000 additional variants being detected per sample, while variant calling specificity is unaffected. Structural variations (SVs) incorporated into a graph genome can be genotyped accurately under a unified framework. Finally, we show that iterative augmentation of graph genomes yields incremental gains in variant calling accuracy. Our implementation is a significant advance towards fulfilling the promise of graph genomes to radically enhance the scalability and accuracy of genomic analyses.

biorxiv bioinformatics 100-200-users 2017

High-resolution genome-wide functional dissection of transcriptional regulatory regions in human, bioRxiv, 2017-09-28

AbstractGenome-wide epigenomic maps revealed millions of regions showing signatures of enhancers, promoters, and other gene-regulatory elements1. However, high-throughput experimental validation of their function and high-resolution dissection of their driver nucleotides remain limited in their scale and length of regions tested. Here, we present a new method, HiDRA (High-Definition Reporter Assay), that overcomes these limitations by combining components of Sharpr-MPRA2 and STARR-Seq3 with genome-wide selection of accessible regions from ATAC-Seq4. We used HiDRA to test ~7 million DNA fragments preferentially selected from accessible chromatin in the GM12878 lymphoblastoid cell line. By design, accessibility-selected fragments were highly overlapping (up to 370 per region), enabling us to pinpoint driver regulatory nucleotides by exploiting subtle differences in reporter activity between partially-overlapping fragments, using a new machine learning model SHARPR2. Our resulting maps include ~65,000 regions showing significant enhancer function and enriched for endogenous active histone marks (including H3K9ac, H3K27ac), regulatory sequence motifs, and regions bound by immune regulators. Within them, we discover ~13,000 high-resolution driver elements enriched for regulatory motifs and evolutionarily-conservednucleotides, and help predict causal genetic variants underlying disease from genome-wide association studies. Overall, HiDRA provides a general, scalable, high-throughput, and high-resolution approach for experimental dissection of regulatory regions and driver nucleotides in the context of human biology and disease.

biorxiv genomics 200-500-users 2017

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo