Reprogramming human T cell function and specificity with non-viral genome targeting, bioRxiv, 2017-09-01

Human T cells are central to physiological immune homeostasis, which protects us from pathogens without collateral autoimmune inflammation. They are also the main effectors in most current cancer immunotherapy strategies1. Several decades of work have aimed to genetically reprogram T cells for therapeutic purposes2–5, but as human T cells are resistant to most standard methods of large DNA insertion these approaches have relied on recombinant viral vectors, which do not target transgenes to specific genomic sites6, 7. In addition, the need for viral vectors has slowed down research and clinical use as their manufacturing and testing is lengthy and expensive. Genome editing brought the promise of specific and efficient insertion of large transgenes into target cells through homology-directed repair (HDR), but to date in human T cells this still requires viral transduction8, 9. Here, we developed a non-viral, CRISPR-Cas9 genome targeting system that permits the rapid and efficient insertion of individual or multiplexed large (>1 kilobase) DNA sequences at specific sites in the genomes of primary human T cells while preserving cell viability and function. We successfully tested the potential therapeutic use of this approach in two settings. First, we corrected a pathogenic IL2RA mutation in primary T cells from multiple family members with monogenic autoimmune disease and demonstrated enhanced signalling function. Second, we replaced the endogenous T cell receptor (TCR) locus with a new TCR redirecting T cells to a cancer antigen. The resulting TCR-engineered T cells specifically recognized the tumour antigen, with concomitant cytokine release and tumour cell killing. Taken together, these studies provide preclinical evidence that non-viral genome targeting will enable rapid and flexible experimental manipulation and therapeutic engineering of primary human immune cells.

biorxiv genetics 0-100-users 2017

The 10,000 Immunomes Project A resource for human immunology, bioRxiv, 2017-08-26

AbstractNew immunological assays now enable rich measurements of human immune function, but difficulty attaining enough measurements across sufficiently large and diverse cohorts has hindered describing normal human immune physiology on a large scale. Here we present the 10,000 Immunomes Project (10KIP), a diverse human immunology reference derived from over 44,000 individuals across 242 studies from ImmPort, a publicly available resource of raw immunology study data and protocols. We carefully curated datasets, aggregating subjects from healthycontrol arms and harmonizing data across studies. We demonstrate 10KIP’s utility by describing variations in serum cytokines and leukocytes by age, race, and sex; defining a baseline cell-cytokine network; and using 10KIP as a common control to describe immunologic changes in pregnancy. Subject-level data is available for interactive visualization and download at <jatsext-link xmlnsxlink=httpwww.w3.org1999xlink ext-link-type=uri xlinkhref=http10kImmunomes.org>http10kImmunomes.org<jatsext-link>. We believe 10KIP can serve as a common control cohort and will accelerate hypothesis generation by clinical and basic immunologists across diverse populations.One Sentence SummaryAn open online resource of human immunology data from more than 10,000 normal subjects including interactive data visualization and download enables a new look at immune system differences across age and sex, rapid hypothesis generation, and creation of custom control cohorts.

biorxiv immunology 200-500-users 2017

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo