Genome-wide genetic data on ~500,000 UK Biobank participants, bioRxiv, 2017-07-21

AbstractThe UK Biobank project is a large prospective cohort study of ~500,000 individuals from across the United Kingdom, aged between 40-69 at recruitment. A rich variety of phenotypic and health-related information is available on each participant, making the resource unprecedented in its size and scope. Here we describe the genome-wide genotype data (~805,000 markers) collected on all individuals in the cohort and its quality control procedures. Genotype data on this scale offers novel opportunities for assessing quality issues, although the wide range of ancestries of the individuals in the cohort also creates particular challenges. We also conducted a set of analyses that reveal properties of the genetic data – such as population structure and relatedness – that can be important for downstream analyses. In addition, we phased and imputed genotypes into the dataset, using computationally efficient methods combined with the Haplotype Reference Consortium (HRC) and UK10K haplotype resource. This increases the number of testable variants by over 100-fold to ~96 million variants. We also imputed classical allelic variation at 11 human leukocyte antigen (HLA) genes, and as a quality control check of this imputation, we replicate signals of known associations between HLA alleles and many common diseases. We describe tools that allow efficient genome-wide association studies (GWAS) of multiple traits and fast phenome-wide association studies (PheWAS), which work together with a new compressed file format that has been used to distribute the dataset. As a further check of the genotyped and imputed datasets, we performed a test-case genome-wide association scan on a well-studied human trait, standing height.

biorxiv genetics 200-500-users 2017

Integrated analysis of single cell transcriptomic data across conditions, technologies, and species, bioRxiv, 2017-07-19

ABSTRACTSingle cell RNA-seq (scRNA-seq) has emerged as a transformative tool to discover and define cellular phenotypes. While computational scRNA-seq methods are currently well suited for experiments representing a single condition, technology, or species, analyzing multiple datasets simultaneously raises new challenges. In particular, traditional analytical workflows struggle to align subpopulations that are present across datasets, limiting the possibility for integrated or comparative analysis. Here, we introduce a new computational strategy for scRNA-seq alignment, utilizing common sources of variation to identify shared subpopulations between datasets as part of our R toolkit Seurat. We demonstrate our approach by aligning scRNA-seq datasets of PBMCs under resting and stimulated conditions, hematopoietic progenitors sequenced across two profiling technologies, and pancreatic cell ‘atlases’ generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across datasets, and can identify subpopulations that could not be detected by analyzing datasets independently. We anticipate that these methods will serve not only to correct for batch or technology-dependent effects, but also to facilitate general comparisons of scRNA-seq datasets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution.AvailabilityInstallation instructions, documentation, and tutorials are available at <jatsext-link xmlnsxlink=httpwww.w3.org1999xlink ext-link-type=uri xlinkhref=httpwww.satijalab.orgseurat>httpwww.satijalab.orgseurat<jatsext-link>

biorxiv genomics 100-200-users 2017

A comprehensive map of genetic variation in the world’s largest ethnic group - Han Chinese, bioRxiv, 2017-07-14

AbstractAs are most non-European populations around the globe, the Han Chinese are relatively understudied in population and medical genetics studies. From low-coverage whole-genome sequencing of 11,670 Han Chinese women we present a catalog of 25,057,223 variants, including 548,401 novel variants that are seen at least 10 times in our dataset. Individuals from our study come from 19 out of 22 provinces across China, allowing us to study population structure, genetic ancestry, and local adaptation in Han Chinese. We identify previously unrecognized population structure along the East-West axis of China and report unique signals of admixture across geographical space, such as European influences among the Northwestern provinces of China. Finally, we identified a number of highly differentiated loci, indicative of local adaptation in the Han Chinese. In particular, we detected extreme differentiation among the Han Chinese at MTHFR, ADH7, and FADS loci, suggesting that these loci may not be specifically selected in Tibetan and Inuit populations as previously suggested. On the other hand, we find that Neandertal ancestry does not vary significantly across the provinces, consistent with admixture prior to the dispersal of modern Han Chinese. Furthermore, contrary to a previous report, Neandertal ancestry does not explain a significant amount of heritability in depression. Our findings provide the largest genetic data set so far made available for Han Chinese and provide insights into the history and population structure of the world’s largest ethnic group.

biorxiv genetics 100-200-users 2017

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo