Epigenetic maintenance of DNA methylation after evolutionary loss of the de novo methyltransferase, bioRxiv, 2017-06-14
ABSTRACTAfter the initial establishment of symmetric cytosine methylation patterns by de novo DNA methyltransferases (DNMTs), maintenance DNMTs mediate epigenetic memory by propagating the initial signal. We find that CG methylation in the yeast Cryptococcus neoformans is dependent on a purely epigenetic mechanism mediated by the single DNMT encoded by the genome, Dnmt5. Purified Dnmt5 is a maintenance methyltransferase that strictly requires a hemimethylated substrate, and methylation lost by removal of Dnmt5 in vivo is not restored by its mitotic or meiotic reintroduction. Phylogenetic analysis reveals that the ancestral species had a second methyltransferase, DnmtX, whose gene was lost between 50 and 150 Mya. Expression of extant DnmtXs in C. neoformans triggers de novo methylation. These data indicate that DNA methylation has been maintained epigenetically by the Dnmt5 system since the ancient loss of the DnmtX de novo enzyme, implying remarkably long-lived epigenetic memory.Single sentence summaryEpigenetic information can be inherited over geological timescales
biorxiv molecular-biology 100-200-users 2017Evolutionary persistence of DNA methylation for millions of years after ancient loss of a de novo methyltransferase, bioRxiv, 2017-06-14
SUMMARYCytosine methylation of DNA is a widespread modification of DNA that plays numerous critical roles, yet has been lost many times in diverse eukaryotic lineages. In the yeast Cryptococcus neoformans, CG methylation occurs in transposon-rich repeats and requires the DNA methyltransferase, Dnmt5. We show that Dnmt5 displays exquisite maintenance-type specificity in vitro and in vivo and utilizes similar in vivo cofactors as the metazoan maintenance methylase Dnmt1. Remarkably, phylogenetic and functional analysis revealed that the ancestral species lost the gene for a de novo methylase, DnmtX, between 50-150 MYA. We examined how methylation has persisted since the ancient loss of DnmtX. Experimental and comparative studies reveal efficient replication of methylation patterns in C. neoformans, rare stochastic methylation loss and gain events, and the action of natural selection. We propose that an epigenome has been propagated for >50 MY through a process analogous to Darwinian evolution of the genome.
biorxiv molecular-biology 200-500-users 2017Low rate of somatic mutations in a long-lived oak tree, bioRxiv, 2017-06-14
Because plants do not possess a proper germline, deleterious somatic mutations can be passed to gametes and a large number of cell divisions separating zygote from gamete formation in long-lived plants may lead to many mutations. We sequenced the genome of two terminal branches of a 234-year-old oak tree and found few fixed somatic single-nucleotide variants (SNVs), whose sequential appearance in the tree could be traced along nested sectors of younger branches. Our data suggest that stem cells of shoot meristems are robustly protected from accumulation of mutations in trees.
biorxiv plant-biology 200-500-users 2017Regional missense constraint improves variant deleteriousness prediction, bioRxiv, 2017-06-13
AbstractGiven increasing numbers of patients who are undergoing exome or genome sequencing, it is critical to establish tools and methods to interpret the impact of genetic variation. While the ability to predict deleteriousness for any given variant is limited, missense variants remain a particularly challenging class of variation to interpret, since they can have drastically different effects depending on both the precise location and specific amino acid substitution of the variant. In order to better evaluate missense variation, we leveraged the exome sequencing data of 60,706 individuals from the Exome Aggregation Consortium (ExAC) dataset to identify sub-genic regions that are depleted of missense variation. We further used this depletion as part of a novel missense deleteriousness metric named MPC. We applied MPC to de novo missense variants and identified a category of de novo missense variants with the same impact on neurodevelopmental disorders as truncating mutations in intolerant genes, supporting the value of incorporating regional missense constraint in variant interpretation.
biorxiv genomics 100-200-users 2017A single-cell anatomical blueprint for intracortical information transfer from primary visual cortex, bioRxiv, 2017-06-10
The wiring diagram of the neocortex determines how information is processed across dozens of cortical areas. Each area communicates with multiple others via extensive long-range axonal projections 1–6, but the logic of inter-area information transfer is unresolved. Specifically, the extent to which individual neurons send dedicated projections to single cortical targets or distribute their signals across multiple areas remains unclear5,7–20. Distinguishing between these possibilities has been challenging because axonal projections of only a few individual neurons have been reconstructed. Here we map the projection patterns of axonal arbors from 591 individual neurons in mouse primary visual cortex (V1) using two complementary methods whole-brain fluorescence-based axonal tracing21,22 and high-throughput DNA sequencing of genetically barcoded neurons (MAPseq)23. Although our results confirm the existence of dedicated projections to certain cortical areas, we find these are the exception, and that the majority of V1 neurons broadcast information to multiple cortical targets. Furthermore, broadcasting cells do not project to all targets randomly, but rather comprise subpopulations that either avoid or preferentially innervate specific subsets of cortical areas. Our data argue against a model of dedicated lines of intracortical information transfer via “one neuron – one target area” mapping. Instead, long-range communication between a sensory cortical area and its targets may be based on a principle whereby individual neurons copy information to, and potentially coordinate activity across, specific subsets of cortical areas.
biorxiv neuroscience 100-200-users 2017Graphtyper Population-scale genotyping using pangenome graphs, bioRxiv, 2017-06-10
AbstractA fundamental requisite for genetic studies is an accurate determination of sequence variation. While human genome sequence diversity is increasingly well characterized, there is a need for efficient ways to utilize this knowledge in sequence analysis. Here we present Graphtyper, a publicly available novel algorithm and software for discovering and genotyping sequence variants. Graphtyper realigns short-read sequence data to a pangenome, a variation-aware graph structure that encodes sequence variation within a population by representing possible haplotypes as graph paths. Our results show that Graphtyper is fast, highly scalable, and provides sensitive and accurate genotype calls. Graphtyper genotyped 89.4 million sequence variants in whole-genomes of 28,075 Icelanders using less than 100,000 CPU days, including detailed genotyping of six human leukocyte antigen (HLA) genes. We show that Graphtyper is a valuable tool in characterizing sequence variation in population-scale sequencing studies.
biorxiv bioinformatics 0-100-users 2017