Improved de novo Genome Assembly Linked-Read Sequencing Combined with Optical Mapping Produce a High Quality Mammalian Genome at Relatively Low Cost, bioRxiv, 2017-04-19
AbstractCurrent short-read methods have come to dominate genome sequencing because they are cost-effective, rapid, and accurate. However, short reads are most applicable when data can be aligned to a known reference. Two new methods for de novo assembly are linked-reads and restriction-site labeled optical maps. We combined commercial applications of these technologies for genome assembly of an endangered mammal, the Hawaiian Monk seal.We show that the linked-reads produced with 10X Genomics Chromium chemistry and assembled with Supernova v1.1 software produced scaffolds with an N50 of 22.23 Mbp with the longest individual scaffold of 84.06 Mbp. When combined with Bionano Genomics optical maps using Bionano RefAligner, the scaffold N50 increased to 29.65 Mbp for a total of 170 hybrid scaffolds, the longest of which was 84.78 Mbp. These results were 161X and 215X, respectively, improved over DISCOVAR de novo assemblies. The quality of the scaffolds was assessed using conserved synteny analysis of both the DNA sequence and predicted seal proteins relative to the genomes of humans and other species. We found large blocks of conserved synteny suggesting that the hybrid scaffolds were high quality. An inversion in one scaffold complementary to human chromosome 6 was found and confirmed by optical maps.The complementarity of linked-reads and optical maps is likely to make the production of high quality genomes more routine and economical and, by doing so, significantly improve our understanding of comparative genome biology.
biorxiv genomics 0-100-users 2017Surgically disconnected temporal pole exhibits resting functional connectivity with remote brain regions, bioRxiv, 2017-04-16
AbstractFunctional connectivity, as measured by resting-state fMRI, has proven a powerful method for studying brain systems in the context of behavior, development, and disease states. However, the relationship of functional connectivity to structural connectivity remains unclear. If functional connectivity relies on structural connectivity, then anatomical isolation of a brain region should eliminate functional connectivity with other brain regions. We tested this by measuring functional connectivity of the surgically disconnected temporal pole in resection patients (N=5; mean age 37; 2F, 3M). Functional connectivity was evaluated based on coactivation of whole-brain fMRI data with the average low-frequency BOLD signal from disconnected tissue in each patient. In sharp contrast to our prediction, we observed significant functional connectivity between the disconnected temporal pole and remote brain regions in each disconnection case. These findings raise important questions about the neural bases of functional connectivity measures derived from the fMRI BOLD signal.
biorxiv neuroscience 200-500-users 2017Nanopore Long-Read RNAseq Reveals Widespread Transcriptional Variation Among the Surface Receptors of Individual B cells, bioRxiv, 2017-04-14
ABSTRACTUnderstanding gene regulation and function requires a genome-wide method capable of capturing both gene expression levels and isoform diversity at the single cell level. Short-read RNAseq, while the current standard for gene expression quantification, is limited in its ability to resolve complex isoforms because it fails to sequence full-length cDNA copies of RNA molecules. Here, we investigated whether RNAseq using the long-read single-molecule Oxford Nanopore MinION sequencing technology (ONT RNAseq) would be able to identify and quantify complex isoforms without sacrificing accurate gene expression quantification. After successfully benchmarking our experimental and computational approaches on a mixture of synthetic transcripts, we analyzed individual murine B1a cells using a new cellular indexing strategy. Using the Mandalorion analysis pipeline we developed, we identified thousands of unannotated transcription start and end sites, as well as hundreds of alternative splicing events in these B1a cells. We also identified hundreds of genes expressed across B1a cells that displayed multiple complex isoforms, including several B cell specific surface receptors and the antibody heavy chain (IGH) locus. Our results show that not only can we identify complex isoforms, but also quantify their expression, at the single cell level.
biorxiv genomics 100-200-users 2017Index switching causes “spreading-of-signal” among multiplexed samples in Illumina HiSeq 4000 DNA sequencing, bioRxiv, 2017-04-10
AbstractIllumina-based next generation sequencing (NGS) has accelerated biomedical discovery through its ability to generate thousands of gigabases of sequencing output per run at a fraction of the time and cost of conventional technologies. The process typically involves four basic steps library preparation, cluster generation, sequencing, and data analysis. In 2015, a new chemistry of cluster generation was introduced in the newer Illumina machines (HiSeq 30004000X Ten) called exclusion amplification (ExAmp), which was a fundamental shift from the earlier method of random cluster generation by bridge amplification on a non-patterned flow cell. The ExAmp chemistry, in conjunction with patterned flow cells containing nanowells at fixed locations, increases cluster density on the flow cell, thereby reducing the cost per run. It also increases sequence read quality, especially for longer read lengths (up to 150 base pairs). This advance has been widely adopted for genome sequencing because greater sequencing depth can be achieved for lower cost without compromising the quality of longer reads. We show that this promising chemistry is problematic, however, when multiplexing samples. We discovered that up to 5-10% of sequencing reads (or signals) are incorrectly assigned from a given sample to other samples in a multiplexed pool. We provide evidence that this “spreading-of-signals” arises from low levels of free index primers present in the pool. These index primers can prime pooled library fragments at random via complementary 3’ ends, and get extended by DNA polymerase, creating a new library molecule with a new index before binding to the patterned flow cell to generate a cluster for sequencing. This causes the resulting read from that cluster to be assigned to a different sample, causing the spread of signals within multiplexed samples. We show that low levels of free index primers persist after the most common library purification procedure recommended by Illumina, and that the amount of signal spreading among samples is proportional to the level of free index primer present in the library pool. This artifact causes homogenization and misclassification of cells in single cell RNA-seq experiments. Therefore, all data generated in this way must now be carefully re-examined to ensure that “spreading-of-signals” has not compromised data analysis and conclusions. Re-sequencing samples using an older technology that uses conventional bridge amplification for cluster generation, or improved library cleanup strategies to remove free index primers, can minimize or eliminate this signal spreading artifact.
biorxiv molecular-biology 500+-users 2017Looking into Pandora’s Box The Content of Sci-Hub and its Usage, bioRxiv, 2017-04-09
AbstractDespite the growth of Open Access, illegally circumventing paywalls to access scholarly publications is becoming a more mainstream phenomenon. The web service Sci-Hub is amongst the biggest facilitators of this, offering free access to around 62 million publications. So far it is not well studied how and why its users are accessing publications through Sci-Hub. By utilizing the recently released corpus of Sci-Hub and comparing it to the data of ˜28 million downloads done through the service, this study tries to address some of these questions. The comparative analysis shows that both the usage and complete corpus is largely made up of recently published articles, with users disproportionately favoring newer articles and 35% of downloaded articles being published after 2013. These results hint that embargo periods before publications become Open Access are frequently circumnavigated using Guerilla Open Access approaches like Sci-Hub. On a journal level, the downloads show a bias towards some scholarly disciplines, especially Chemistry, suggesting increased barriers to access for these. Comparing the use and corpus on a publisher level, it becomes clear that only 11% of publishers are highly requested in comparison to the baseline frequency, while 45% of all publishers are significantly less accessed than expected. Despite this, the oligopoly of publishers is even more remarkable on the level of content consumption, with 80% of all downloads being published through only 9 publishers. All of this suggests that Sci-Hub is used by different populations and for a number of different reasons, and that there is still a lack of access to the published scientific record. A further analysis of these openly available data resources will undoubtedly be valuable for the investigation of academic publishing.
biorxiv scientific-communication-and-education 200-500-users 2017Strain-resolved microbiome sequencing reveals mobile elements that drive bacterial competition on a clinical timescale, bioRxiv, 2017-04-08
AbstractAlthough shotgun short-read sequencing has facilitated the study of strain-level architecture within complex microbial communities, existing metagenomic approaches often cannot capture structural differences between closely related co-occurring strains. Recent methods, which employ read cloud sequencing and specialized assembly techniques, provide significantly improved genome drafts and show potential to capture these strain-level differences. Here, we apply this read cloud metagenomic approach to longitudinal stool samples from a patient undergoing hematopoietic cell transplantation. The patient’s microbiome is profoundly disrupted and is eventually dominated by Bacteroides caccae. Comparative analysis of B. caccae genomes obtained using read cloud sequencing together with metagenomic RNA sequencing allows us to predict that particular mobile element integrations result in increased antibiotic resistance, which we further support using in vitro antibiotic susceptibility testing. Thus, we find read cloud sequencing to be useful in identifying strain-level differences that underlie differential fitness.
biorxiv bioinformatics 100-200-users 2017