Tracing diagnosis trajectories over millions of inpatients reveal an unexpected association between schizophrenia and rhabdomyolysis, bioRxiv, 2018-11-20
AbstractWhile it has been technically feasible to create longitudinal representations of individual health at a nationwide scale, the use of these techniques to identify novel disease associations for the risk stratification of patients has had limited success. Here, we created a large-scale US longitudinal disease network of traced readmission patterns (i.e., disease trajectories), merging data from over 10.4 million inpatients from 350 California hospitals through the Healthcare Cost and Utilization Project between 1980 and 2010. We were able to create longitudinal representations of disease progression mapping over 300 common diseases, including the well-known complication of heart failure after acute myocardial infarction. Surprisingly, out of these generated disease trajectories, we discovered an unknown association between schizophrenia, a chronic mental disorder, and rhabdomyolysis, a rare disease of muscle breakdown. It was found that 92 of 3674 patients (2.5%) with schizophrenia were readmitted for rhabdomyolysis (relative risk, 2.21 [1.80–2.71, confidence interval = 0.95] P-value 9.54E-15), which has a general population incidence of 1 in 10,000. We validated this association using independent electronic health records from over 830,000 patients treated over seven years at the University of California, San Francisco (UCSF) medical center. A case review of 29 patients at UCSF who were treated for schizophrenia and who went on to develop rhabdomyolysis demonstrated that the majority of cases (62%) are idiopathic, which suggests a biological connection between these two diseases. Together, these findings demonstrate the power of using public disease registries in combination with electronic medical records to discover novel disease associations.One Sentence SummaryBased on the longitudinal health records from millions of California inpatient discharges, we created a temporal network that enabled us to understand statewide patterns of hospital readmissions, which led to the novel finding that hospitalization for schizophrenia is significantly associated with rehospitalization for rhabdomyolysis.
biorxiv bioinformatics 0-100-users 2018Disorganization of the histone core promotes organization of heterochromatin into phase-separated droplets, bioRxiv, 2018-11-19
AbstractThe heterochromatin protein HP1 is proposed to enable chromatin compaction via liquid droplet formation. Yet, a connection between phase separation and chromatin compaction has not been experimentally demonstrated. More fundamentally, how HP1 action at the level of a single nucleosome drives chromatin compaction remains poorly understood. Here we directly demonstrate that the S. pombe HP1 protein, Swi6, compacts arrays of multiple nucleosomes into phase-separated droplets. Using hydrogen-deuterium exchange, NMR, and mass-spectrometry, we further find that Swi6 substantially increases the accessibility and dynamics of buried histone residues within a mononucleosome. Restraining these dynamics via site-specific disulfide bonds impairs the compaction of nucleosome arrays into phase-separated droplets. Our results indicate that chromatin compaction and phase separation can be highly coupled processes. Further, we find that such coupling is promoted by a counter-intuitive function of Swi6, namely disorganization of the octamer core. Phase separation is canonically mediated by weak and dynamic multivalent interactions. We propose that dynamic exposure of buried histone residues increases opportunities for multivalent interactions between nucleosomes, thereby coupling chromatin compaction to phase separation. We anticipate that this new model for chromatin organization may more generally explain the formation of highly compacted chromatin assemblies beyond heterochromatin.
biorxiv biophysics 0-100-users 2018DNA microscopy Optics-free spatio-genetic imaging by a stand-alone chemical reaction, bioRxiv, 2018-11-19
AbstractAnalyzing the spatial organization of molecules in cells and tissues is a cornerstone of biological research and clinical practice. However, despite enormous progress in profiling the molecular constituents of cells, spatially mapping these constituents remains a disjointed and machinery-intensive process, relying on either light microscopy or direct physical registration and capture. Here, we demonstrate DNA microscopy, a new imaging modality for scalable, optics-free mapping of relative biomolecule positions. In DNA microscopy of transcripts, transcript molecules are tagged in situ with randomized nucleotides, labeling each molecule uniquely. A second in situ reaction then amplifies the tagged molecules, concatenates the resulting copies, and adds new randomized nucleotides to uniquely label each concatenation event. An algorithm decodes molecular proximities from these concatenated sequences, and infers physical images of the original transcripts at cellular resolution. Because its imaging power derives entirely from diffusive molecular dynamics, DNA microscopy constitutes a chemically encoded microscopy system.
biorxiv bioengineering 200-500-users 2018The Barcode, UMI, Set format and BUStools, bioRxiv, 2018-11-19
AbstractWe introduce the Barcode-UMI-Set format (BUS) for representing pseudoalignments of reads from single-cell RNA-seq experiments. The format can be used with all single-cell RNA-seq technologies, and we show that BUS files can be efficiently generated. BUStools is a suite of tools for working with BUS files and facilitates rapid quantification and analysis of single-cell RNA-seq data. The BUS format therefore makes possible the development of modular, technology-specific, and robust workflows for single-cell RNA-seq analysis.
biorxiv bioinformatics 100-200-users 2018Plant Extracellular Vesicles Contain Diverse Small RNA Species and Are Enriched in 10 to 17 Nucleotide “Tiny” RNAs, bioRxiv, 2018-11-17
ABSTRACTSmall RNAs (sRNAs) that are 21 to 24 nucleotides (nt) in length are found in most eukaryotic organisms and regulate numerous biological functions, including transposon silencing, development, reproduction, and stress responses, typically via control of the stability andor translation of target mRNAs. Major classes of sRNAs in plants include microRNAs (miRNAs) and small interfering RNAs (siRNAs); sRNAs are known to travel as a silencing signal from cell to cell, root to shoot, and even between host and pathogen. In mammals, sRNAs are transported inside extracellular vesicles (EVs), which are mobile lipid compartments that participate in intercellular communication. In addition to sRNAs, EVs carry proteins, lipids, metabolites, and potentially other types of nucleic acids. Here we report that plant EVs also contain diverse species of sRNA. We found that specific miRNAs and siRNAs are preferentially loaded into plant EVs. We also report a previously overlooked class of “tiny RNAs” (10 to 17 nt) that are highly enriched in EVs. This new RNA category of unknown function has a broad and very diverse genome origin and might correspond to degradation products.
biorxiv plant-biology 100-200-users 2018