A computational framework for systematic exploration of biosynthetic diversity from large-scale genomic data, bioRxiv, 2018-10-17
AbstractGenome mining has become a key technology to explore and exploit natural product diversity through the identification and analysis of biosynthetic gene clusters (BGCs). Initially, this was performed on a single-genome basis; currently, the process is being scaled up to large-scale mining of pan-genomes of entire genera, complete strain collections and metagenomic datasets from which thousands of bacterial genomes can be extracted at once. However, no bioinformatic framework is currently available for the effective analysis of datasets of this size and complexity. Here, we provide a streamlined computational workflow, tightly integrated with antiSMASH and MIBiG, that consists of two new software tools, BiG-SCAPE and CORASON. BiG-SCAPE facilitates rapid calculation and interactive visual exploration of BGC sequence similarity networks, grouping gene clusters at multiple hierarchical levels, and includes a ‘glocal’ alignment mode that accurately groups both complete and fragmented BGCs. CORASON employs a phylogenomic approach to elucidate the detailed evolutionary relationships between gene clusters by computing high-resolution multi-locus phylogenies of all BGCs within and across gene cluster families (GCFs), and allows researchers to comprehensively identify all genomic contexts in which particular biosynthetic gene cassettes are found. We validate BiG-SCAPE by correlating its GCF output to metabolomic data across 403 actinobacterial strains. Furthermore, we demonstrate the discovery potential of the platform by using CORASON to comprehensively map the phylogenetic diversity of the large detoxinrimosamide gene cluster clan, prioritizing three new detoxin families for subsequent characterization of six new analogs using isotopic labeling and analysis of tandem mass spectrometric data.
biorxiv bioinformatics 100-200-users 2018An Analysis of Decision Under Risk in Rats, bioRxiv, 2018-10-17
AbstractProspect Theory is the predominant behavioral economic theory describing decision-making under risk. It accounts for near universal aspects of human choice behavior whose prevalence may reflect fundamental neural mechanisms. We now apply Prospect Theory’s framework to rodents, using a task in which rats chose between guaranteed and probabilistic rewards. Like humans, rats distorted probabilities and showed diminishing marginal sensitivity, in which they were less sensitive to differences in larger rewards. They exhibited reference dependence, in which the valence of outcomes (gain or loss) was determined by an internal reference point reflecting reward history. The similarities between rats and humans suggest conserved neural substrates, and enable application of powerful molecularcircuit tools to study mechanisms of psychological phenomena from behavioral economics.
biorxiv neuroscience 0-100-users 2018Fast two-photon volumetric imaging of an improved voltage indicator reveals electrical activity in deeply located neurons in the awake brain, bioRxiv, 2018-10-17
ABSTRACTImaging of transmembrane voltage deep in brain tissue with cellular resolution has the potential to reveal information processing by neuronal circuits in living animals with minimal perturbation. Multi-photon voltage imaging in vivo, however, is currently limited by speed and sensitivity of both indicators and imaging methods. Here, we report the engineering of an improved genetically encoded voltage indicator, ASAP3, which exhibits up to 51% fluorescence responses in the physiological voltage range, sub-millisecond activation kinetics, and full responsivity under two-photon illumination. We also introduce an ultrafast local volume excitation (ULOVE) two-photon scanning method to sample ASAP3 signals in awake mice at kilohertz rates with increased stability and sensitivity. ASAP3 and ULOVE allowed continuous single-trial tracking of spikes and subthreshold events for minutes in deep locations, with subcellular resolution, and with repeated sampling over multiple days. By imaging voltage in visual cortex neurons, we found evidence for cell type-dependent subthreshold modulation by locomotion. Thus, ASAP3 and ULOVE enable continuous high-speed high-resolution imaging of electrical activity in deeply located genetically defined neurons during awake behavior.
biorxiv neuroscience 0-100-users 2018High throughput droplet single-cell Genotyping of Transcriptomes (GoT) reveals the cell identity dependency of the impact of somatic mutations, bioRxiv, 2018-10-17
AbstractDefining the transcriptomic identity of clonally related malignant cells is challenging in the absence of cell surface markers that distinguish cancer clones from one another or from admixed non-neoplastic cells. While single-cell methods have been devised to capture both the transcriptome and genotype, these methods are not compatible with droplet-based single-cell transcriptomics, limiting their throughput. To overcome this limitation, we present single-cell Genotyping of Transcriptomes (GoT), which integrates cDNA genotyping with high-throughput droplet-based single-cell RNA-seq. We further demonstrate that multiplexed GoT can interrogate multiple genotypes for distinguishing subclonal transcriptomic identity. We apply GoT to 26,039 CD34+ cells across six patients with myeloid neoplasms, in which the complex process of hematopoiesis is corrupted by CALR-mutated stem and progenitor cells. We define high-resolution maps of malignant versus normal hematopoietic progenitors, and show that while mutant cells are comingled with wildtype cells throughout the hematopoietic progenitor landscape, their frequency increases with differentiation. We identify the unfolded protein response as a predominant outcome of CALR mutations, with significant cell identity dependency. Furthermore, we identify that CALR mutations lead to NF-κB pathway upregulation specifically in uncommitted early stem cells. Collectively, GoT provides high-throughput linkage of single-cell genotypes with transcriptomes and reveals that the transcriptional output of somatic mutations is heavily dependent on the native cell identity.
biorxiv cancer-biology 0-100-users 2018How face perception unfolds over time, bioRxiv, 2018-10-17
Within a fraction of a second of viewing a face, we have already determined its gender, age and identity. A full understanding of this remarkable feat will require a characterization of the computational steps it entails, along with the representations extracted at each. To this end, we used magnetoencephalography to measure the time course of neural responses to faces, thereby addressing two fundamental questions about how face processing unfolds over time. First, using representational similarity analysis, we found that facial gender and age information emerged before identity information, suggesting a coarse-to-fine processing of face dimensions. Second, identity and gender representations of familiar faces were enhanced very early on, indicating that the previously-reported behavioral benefit for familiar faces results from tuning of early feed-forward processing mechanisms. These findings start to reveal the time course of face perception in humans, and provide powerful new constraints on computational theories of face perception.
biorxiv neuroscience 200-500-users 2018