Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors, bioRxiv, 2018-10-17

AbstractBirth weight (BW) variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. These associations have been proposed to reflect the lifelong consequences of an adverse intrauterine environment. In earlier work, we demonstrated that much of the negative correlation between BW and adult cardio-metabolic traits could instead be attributable to shared genetic effects. However, that work and other previous studies did not systematically distinguish the direct effects of an individual’s own genotype on BW and subsequent disease risk from indirect effects of their mother’s correlated genotype, mediated by the intrauterine environment. Here, we describe expanded genome-wide association analyses of own BW (n=321,223) and offspring BW (n=230,069 mothers), which identified 278 independent association signals influencing BW (214 novel). We used structural equation modelling to decompose the contributions of direct fetal and indirect maternal genetic influences on BW, implicating fetal- and maternal-specific mechanisms. We used Mendelian randomization to explore the causal relationships between factors influencing BW through fetal or maternal routes, for example, glycemic traits and blood pressure. Direct fetal genotype effects dominate the shared genetic contribution to the association between lower BW and higher type 2 diabetes risk, whereas the relationship between lower BW and higher later blood pressure (BP) is driven by a combination of indirect maternal and direct fetal genetic effects indirect effects of maternal BP-raising genotypes act to reduce offspring BW, but only direct fetal genotype effects (once inherited) increase the offspring’s later BP. Instrumental variable analysis using maternal BW-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring BP. In successfully separating fetal from maternal genetic effects, this work represents an important advance in genetic studies of perinatal outcomes, and shows that the association between lower BW and higher adult BP is attributable to genetic effects, and not to intrauterine programming.

biorxiv genetics 0-100-users 2018

TADs pair homologous chromosomes to promote interchromosomal gene regulation, bioRxiv, 2018-10-17

AbstractHomologous chromosomes colocalize to regulate gene expression in processes including genomic imprinting and X-inactivation, but the mechanisms driving these interactions are poorly understood. In Drosophila, homologous chromosomes pair throughout development, promoting an interchromosomal gene regulatory mechanism called transvection. Despite over a century of study, the molecular features that facilitate chromosome-wide pairing are unknown. The “button” model of pairing proposes that specific regions along chromosomes pair with a higher affinity than their surrounding regions, but only a handful of DNA elements that drive homologous pairing between chromosomes have been described. Here, we identify button loci interspersed across the fly genome that have the ability to pair with their homologous sequences. Buttons are characterized by topologically associated domains (TADs), which drive pairing with their endogenous loci from multiple locations in the genome. Fragments of TADs do not pair, suggesting a model in which combinations of elements interspersed along the full length of a TAD are required for pairing. Though DNA-binding insulator proteins are not associated with pairing, buttons are enriched for insulator cofactors, suggesting that these proteins may mediate higher order interactions between homologous TADs. Using a TAD spanning the spinelessd gene as a paradigm, we find that pairing is necessary but not sufficient for transvection. spineless pairing and transvection are cell-type-specific, suggesting that local buttoning and unbuttoning regulates transvection efficiency between cell types. Together, our data support a model in which specialized TADs button homologous chromosomes together to facilitate cell-type-specific interchromosomal gene regulation.

biorxiv molecular-biology 0-100-users 2018

A membrane-depolarising toxin substrate of the Staphylococcus aureus Type VII protein secretion system targets eukaryotes and bacteria, bioRxiv, 2018-10-16

SummaryThe type VII protein secretion system (T7SS) is conserved across Staphylococcus aureus strains and plays important roles in virulence and interbacterial competition. To date only one T7SS substrate protein, encoded in a subset of strains, has been functionally characterized. Here, using an unbiased proteomic approach, we identify TspA as a further T7SS substrate. TspA, encoded distantly from the T7SS gene cluster, is found across all S. aureus strains. Heterologous expression of TspA indicates that it has a toxic C-terminal domain that depolarizes membranes. The membrane depolarizing activity is alleviated by co-production of the TsaI immunity protein. Using a zebrafish hindbrain ventricle infection model, we demonstrate that the T7SS of strain RN6390 contributes to zebrafish mortality, and deletion of tspA leads to increased bacterial clearance in vivo. The toxin domain of TspA is highly polymorphic and S. aureus strains encode multiple tsaI homologues at the tspA locus, suggestive of additional roles in intra-species competition. In agreement, we demonstrate TspA-dependent growth inhibition of RN6390 by strain COL in the zebrafish infection model, that is alleviated by the presence of TsaI homologues. This is the first T7SS substrate protein shown to have activity against both eukaryotes and prokaryotes.

biorxiv microbiology 0-100-users 2018

Comparison of single-cell whole-genome amplification strategies, bioRxiv, 2018-10-16

Single-cell genomics is an alluring area that holds the potential to change the way we understand cell populations. Due to the small amount of DNA within a single cell, whole-genome amplification becomes a mandatory step in many single-cell applications. Unfortunately, single-cell whole-genome amplification (scWGA) strategies suffer from several technical biases that complicate the posterior interpretation of the data. Here we compared the performance of six different scWGA methods (GenomiPhi, REPLIg, TruePrime, Ampli1, MALBAC, and PicoPLEX) after amplifying and low-pass sequencing the complete genome of 230 healthytumoral human cells. Overall, REPLIg outperformed competing methods regarding DNA yield, amplicon size, amplification breadth, amplification uniformity –being the only method with a random amplification bias–, and false single-nucleotide variant calls. On the other hand, non-MDA methods, and in particular Ampli1, showed less allelic imbalance and ADO, more reliable copy-number profiles and less chimeric amplicons. While no single scWGA method showed optimal performance for every aspect, they clearly have distinct advantages. Our results provide a convenient guide for selecting a scWGA method depending on the question of interest while revealing relevant weaknesses that should be considered during the analysis and interpretation of single-cell sequencing data.

biorxiv genomics 100-200-users 2018

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo