A guide to performing Polygenic Risk Score analyses, bioRxiv, 2018-09-16
The application of polygenic risk scores (PRS) has become routine across genetic research. Among a range of applications, PRS are exploited to assess shared aetiology between phenotypes, to evaluate the predictive power of genetic data for use in clinical settings, and as part of experimental studies in which, for example, experiments are performed on individuals, or their biological samples (eg. tissues, cells), at the tails of the PRS distribution and contrasted. As GWAS sample sizes increase and PRS become more powerful, they are set to play a key role in personalised medicine. However, despite the growing application and importance of PRS, there are limited guidelines for performing PRS analyses, which can lead to inconsistency between studies and misinterpretation of results. Here we provide detailed guidelines for performing polygenic risk score analyses relevant to different methods for their calculation, outlining standard quality control steps and offering recommendations for best-practice. We also discuss different methods for the calculation of PRS, common misconceptions regarding the interpretation of results and future challenges.
biorxiv genomics 100-200-users 2018Active and repressed chromatin domains exhibit distinct nucleosome segregation during DNA replication, bioRxiv, 2018-09-16
SummaryChromatin domains and their associated structures must be faithfully inherited through cellular division to maintain cellular identity. Yet, accessing the localized strategies preserving chromatin domain inheritance, specifically the transfer of parental, pre-existing nucleosomes with their associated post-translational modifications (PTMs) during DNA replication is challenging in living cells. We devised an inducible, proximity-dependent labeling system to irreversibly mark replication-dependent H3.1 and H3.2 histone-containing nucleosomes at single desired loci in mouse embryonic stem cells such that their fate after DNA replication could be followed. Strikingly, repressed chromatin domains are preserved through the local re-deposition of parental nucleosomes. In contrast, nucleosomes decorating active chromatin domains do not exhibit such preservation. Notably, altering cell fate leads to an adjustment in the positional inheritance of parental nucleosomes that reflects the corresponding changes in chromatin structure. These findings point to important mechanisms that contribute to parental nucleosome segregation to preserve cellular identity.
biorxiv biochemistry 0-100-users 2018Alcohol consumption and mate choice in UK Biobank comparing observational and Mendelian randomization estimates, bioRxiv, 2018-09-16
AbstractAlcohol use is correlated within spouse-pairs, but it is difficult to disentangle the effects of alcohol consumption on mate-selection from social factors or cohabitation leading to spouses becoming more similar over time. We hypothesised that genetic variants related to alcohol consumption may, via their effect on alcohol behaviour, influence mate selection.Therefore, in a sample of over 47,000 spouse-pairs in the UK Biobank we utilised a well-characterised alcohol related variant, rs1229984 in ADH1B, as a genetic proxy for alcohol use. We compared the phenotypic concordance between spouses for self-reported alcohol use with the association between an individual’s self-reported alcohol use and their partner’s rs1229984 genotype using Mendelian randomization. This was followed up by an exploration of the spousal genotypic concordance for the variant and an analysis determining if relationship length may be related to spousal alcohol behaviour similarities.We found strong evidence that both an individual’s self-reported alcohol consumption and rs1229984 genotype are associated with their partner’s self-reported alcohol use. The Mendelian randomization analysis found that each unit increase in an individual’s weekly alcohol consumption increased their partner’s alcohol consumption by 0.26 units (95% C.I. 0.15, 0.38; P=1.10×10-5). Furthermore, the rs1229984 genotype was concordant within spouse-pairs, suggesting that some spousal concordance for alcohol consumption existed prior to cohabitation. Although the SNP is strongly associated with ancestry, our results suggest that this concordance is unlikely to be explained by population stratification. Overall, our findings suggest that alcohol behaviour directly influences mate selection.
biorxiv genetics 0-100-users 2018Co-option and Detoxification of a Phage Lysin for Housekeeping Function, bioRxiv, 2018-09-16
SummaryTemperate phages constitute a potentially beneficial genetic reservoir for bacterial innovation despite being selfish entities encoding an infection cycle inherently at odds with bacterial fitness. These phages integrate their genomes into the bacterial host during infection, donating new, but deleterious, genetic material the phage genome encodes toxic genes, such as lysins, that kill the bacterium during the phage infection cycle. Remarkably, some bacteria have exploited the destructive properties of phage genes for their own benefit by co-opting them as toxins for functions related to bacterial warfare, virulence, and secretion. However, do toxic phage genes ever become raw material for functional innovation? Here we report on a toxic phage gene whose product has lost its toxicity and has become a domain of a core cellular factor, SpmX, throughout the bacterial order Caulobacterales. Using a combination of phylogenetics, bioinformatics, structural biology, cell biology, and biochemistry, we have investigated the origin and function of SpmX and determined that its occurrence is the result of the detoxification of a phage peptidoglycan hydrolase gene. We show that the retained, attenuated activity of the phage-derived domain plays an important role in proper cell morphology and developmental regulation in representatives of this large bacterial clade. To our knowledge, this is the first observation of phage gene domestication in which a toxic phage gene has been co-opted for a housekeeping function.
biorxiv microbiology 0-100-users 2018Evaluating the evidence for biotypes of depression attempted replication of Drysdale et.al. 2017, bioRxiv, 2018-09-16
AbstractBackgroundPsychiatric disorders are highly heterogeneous, defined based on symptoms with little connection to potential underlying biological mechanisms. A possible approach to dissect biological heterogeneity is to look for biologically meaningful subtypes. A recent study Drysdale et al. (2017) showed promising results along this line by simultaneously using resting state fMRI and clinical data and identified four distinct subtypes of depression with different clinical profiles and abnormal resting state fMRI connectivity. These subtypes were predictive of treatment response to transcranial magnetic stimulation therapy.ObjectiveHere, we attempted to replicate the procedure followed in the Drysdale et al. study and their findings in an independent dataset of a clinically more heterogeneous sample of 187 participants with depression and anxiety. We aimed to answer the following questions 1) Using the same procedure, can we find a statistically significant and reliable relationship between brain connectivity and clinical symptoms? 2) Is the observed relationship similar to the one found in the original study? 3) Can we identify distinct and reliable subtypes? 4) Do they have similar clinical profiles as the subtypes identified in the original study?MethodsWe followed the original procedure as closely as possible, including a canonical correlation analysis to find a low dimensional representation of clinically relevant resting state fMRI features, followed by hierarchical clustering to identify subtypes. We extended the original procedure using additional statistical tests, to test the statistical significance of the relationship between resting state fMRI and clinical data, and the existence of distinct subtypes. Furthermore, we examined the stability of the whole procedure using resampling.Results and ConclusionWe were not able to replicate the findings of the original study. Relationships between brain connectivity and clinical symptoms were not statistically significant and we also did not find clearly distinct subtypes of depression. We argue, that based on our rigorous approach and in-depth review of the original results, that the evidence for the existence of the distinct resting state connectivity based subtypes of depression is weak and should be interpreted with caution.
biorxiv neuroscience 100-200-users 2018A comprehensive analysis of RNA sequences reveals macroscopic somatic clonal expansion across normal tissues, bioRxiv, 2018-09-14
Cancer genome studies have significantly advanced our knowledge of somatic mutations. However, how these mutations accumulate in normal cells and whether they promote pre-cancerous lesions remains poorly understood. Here we perform a comprehensive analysis of normal tissues by utilizing RNA sequencing data from ~6,700 samples across 29 normal tissues collected as part of the Genotype-Tissue Expression (GTEx) project. We identify somatic mutations using a newly developed pipeline, RNA-MuTect, for calling somatic mutations directly from RNA-seq samples and their matched-normal DNA. When applied to the GTEx dataset, we detect multiple variants across different tissues and find that mutation burden is associated with both the age of the individual and tissue proliferation rate. We also detect hotspot cancer mutations that share tissue specificity with their matched cancer type. This study is the first to analyze a large number of samples across multiple normal tissues, identifying clones with genomic aberrations observed in cancer.
biorxiv genomics 200-500-users 2018