Psychoactive plant- and mushroom-associated alkaloids from two behavior modifying cicada pathogens, bioRxiv, 2018-07-25
AbstractEntomopathogenic fungi routinely kill their hosts before releasing infectious spores, but select species keep insects alive while sporulating, which enhances dispersal. Transcriptomics and metabolomics studies of entomopathogens with post-mortem dissemination from their parasitized hosts have unraveled infection processes and host responses, yet mechanisms underlying active spore transmission by Entomophthoralean fungi in living insects remain elusive. Here we report the discovery, through metabolomics, of the plant-associated amphetamine, cathinone, in four Massospora cicadina-infected periodical cicada populations, and the mushroom-associated tryptamine, psilocybin, in annual cicadas infected with Massospora platypediae or Massospora levispora, which appear to represent a single fungal species. The absence of some fungal enzymes necessary for cathinone and psilocybin biosynthesis along with the inability to detect intermediate metabolites or gene orthologs are consistent with possibly novel biosynthesis pathways in Massospora. The neurogenic activities of these compounds suggest the extended phenotype of Massospora that modifies cicada behavior to maximize dissemination is chemically-induced.
biorxiv ecology 200-500-users 2018Cortical Column and Whole Brain Imaging of Neural Circuits with Molecular Contrast and Nanoscale Resolution, bioRxiv, 2018-07-23
AbstractOptical and electron microscopy have made tremendous inroads in understanding the complexity of the brain, but the former offers insufficient resolution to reveal subcellular details and the latter lacks the throughput and molecular contrast to visualize specific molecular constituents over mm-scale or larger dimensions. We combined expansion microscopy and lattice light sheet microscopy to image the nanoscale spatial relationships between proteins across the thickness of the mouse cortex or the entire Drosophila brain, including synaptic proteins at dendritic spines, myelination along axons, and presynaptic densities at dopaminergic neurons in every fly neuropil domain. The technology should enable statistically rich, large scale studies of neural development, sexual dimorphism, degree of stereotypy, and structural correlations to behavior or neural activity, all with molecular contrast.One Sentence SummaryCombined expansion and lattice light sheet microscopy enables high speed, nanoscale molecular imaging of neural circuits over large volumes.
biorxiv neuroscience 200-500-users 2018Panoptic vDISCO imaging reveals neuronal connectivity, remote trauma effects and meningeal vessels in intact transparent mice, bioRxiv, 2018-07-23
Analysis of entire transparent rodent bodies could provide holistic information on biological systems in health and disease. However, it has been challenging to reliably image and quantify signal from endogenously expressed fluorescent proteins in large cleared mouse bodies due to the low signal contrast. Here, we devised a pressure driven, nanobody based whole-body immunolabeling technology to enhance the signal of fluorescent proteins by up to two orders of magnitude. This allowed us to image subcellular details in transparent mouse bodies through bones and highly autofluorescent tissues, and perform quantifications. We visualized for the first-time whole-body neuronal connectivity of an entire adult mouse and discovered that brain trauma induces degeneration of peripheral axons. We also imaged meningeal lymphatic vessels and immune cells through the intact skull and vertebra in naive animals and trauma models. Thus, our new approach can provide an unbiased holistic view of biological events affecting the nervous system and the rest of the body.
biorxiv neuroscience 500+-users 2018High-dimensional geometry of population responses in visual cortex, bioRxiv, 2018-07-22
AbstractA neuronal population encodes information most efficiently when its activity is uncorrelated and high-dimensional, and most robustly when its activity is correlated and lower-dimensional. Here, we analyzed the correlation structure of natural image coding, in large visual cortical populations recorded from awake mice. Evoked population activity was high dimensional, with correlations obeying an unexpected power-law the nth principal component variance scaled as 1n. This was not inherited from the 1f spectrum of natural images, because it persisted after stimulus whitening. We proved mathematically that the variance spectrum must decay at least this fast if a population code is smooth, i.e. if small changes in input cannot dominate population activity. The theory also predicts larger power-law exponents for lower-dimensional stimulus ensembles, which we validated experimentally. These results suggest that coding smoothness represents a fundamental constraint governing correlations in neural population codes.
biorxiv neuroscience 200-500-users 2018A Chromosome-Scale Assembly of the En ormous (32 Gb) Axolotl Genome, bioRxiv, 2018-07-20
ABSTRACTThe axolotl (Ambystoma mexicanum) provides critical models for studying regeneration, evolution and development. However, its large genome (~32 gigabases) presents a formidable barrier to genetic analyses. Recent efforts have yielded genome assemblies consisting of thousands of unordered scaffolds that resolve gene structures, but do not yet permit large scale analyses of genome structure and function. We adapted an established mapping approach to leverage dense SNP typing information and for the first time assemble the axolotl genome into 14 chromosomes. Moreover, we used fluorescence in situ hybridization to verify the structure of these 14 scaffolds and assign each to its corresponding physical chromosome. This new assembly covers 27.3 gigabases and encompasses 94% of annotated gene models on chromosomal scaffolds. We show the assembly’s utility by resolving genome-wide orthologies between the axolotl and other vertebrates, identifying the footprints of historical introgression events that occurred during the development of axolotl genetic stocks, and precisely mapping several phenotypes including a large deletion underlying the cardiac mutant. This chromosome-scale assembly will greatly facilitate studies of the axolotl in biological research.
biorxiv genomics 0-100-users 2018