Genetic compensation is triggered by mutant mRNA degradation, bioRxiv, 2018-05-22
Genetic compensation by transcriptional modulation of related gene(s) (also known as transcriptional adaptation) has been reported in numerous systems1–3; however, whether and how such a response can be activated in the absence of protein feedback loops is unknown. Here, we develop and analyze several models of transcriptional adaptation in zebrafish and mouse that we show are not caused by loss of protein function. We find that the increase in transcript levels is due to enhanced transcription, and observe a correlation between the levels of mutant mRNA decay and transcriptional upregulation of related genes. To assess the role of mutant mRNA degradation in triggering transcriptional adaptation, we use genetic and pharmacological approaches and find that mRNA degradation is indeed required for this process. Notably, uncapped RNAs, themselves subjected to rapid degradation, can also induce transcriptional adaptation. Next, we generate alleles that fail to transcribe the mutated gene and find that they do not show transcriptional adaptation, and exhibit more severe phenotypes than those observed in alleles displaying mutant mRNA decay. Transcriptome analysis of these different alleles reveals the upregulation of hundreds of genes with enrichment for those showing sequence similarity with the mutated gene’s mRNA, suggesting a model whereby mRNA degradation products induce the response via sequence similarity. These results expand the role of the mRNA surveillance machinery in buffering against mutations by triggering the transcriptional upregulation of related genes. Besides implications for our understanding of disease-causing mutations, our findings will help design mutant alleles with minimal transcriptional adaptation-derived compensation.
biorxiv genetics 200-500-users 2018Efficient long single molecule sequencing for cost effective and accurate sequencing, haplotyping, and de novo assembly, bioRxiv, 2018-05-17
Obtaining accurate sequences from long DNA molecules is very important for genome assembly and other applications. Here we describe single tube long fragment read (stLFR), a technology that enables this a low cost. It is based on adding the same barcode sequence to sub-fragments of the original long DNA molecule (DNA co-barcoding). To achieve this efficiently, stLFR uses the surface of microbeads to create millions of miniaturized barcoding reactions in a single tube. Using a combinatorial process up to 3.6 billion unique barcode sequences were generated on beads, enabling practically non-redundant co-barcoding with 50 million barcodes per sample. Using stLFR, we demonstrate efficient unique co-barcoding of over 8 million 20-300 kb genomic DNA fragments. Analysis of the genome of the human genome NA12878 with stLFR demonstrated high quality variant calling and phasing into contigs up to N50 34 Mb. We also demonstrate detection of complex structural variants and complete diploid de novo assembly of NA12878. These analyses were all performed using single stLFR libraries and their construction did not significantly add to the time or cost of whole genome sequencing (WGS) library preparation. stLFR represents an easily automatable solution that enables high quality sequencing, phasing, SV detection, scaffolding, cost-effective diploid de novo genome assembly, and other long DNA sequencing applications.
biorxiv genomics 0-100-users 2018The genetic prehistory of the Greater Caucasus, bioRxiv, 2018-05-16
AbstractArchaeogenetic studies have described the formation of Eurasian ‘steppe ancestry’ as a mixture of Eastern and Caucasus hunter-gatherers. However, it remains unclear when and where this ancestry arose and whether it was related to a horizon of cultural innovations in the 4th millennium BCE that subsequently facilitated the advance of pastoral societies likely linked to the dispersal of Indo-European languages. To address this, we generated genome-wide SNP data from 45 prehistoric individuals along a 3000-year temporal transect in the North Caucasus. We observe a genetic separation between the groups of the Caucasus and those of the adjacent steppe. The Caucasus groups are genetically similar to contemporaneous populations south of it, suggesting that – unlike today – the Caucasus acted as a bridge rather than an insurmountable barrier to human movement. The steppe groups from Yamnaya and subsequent pastoralist cultures show evidence for previously undetected farmer-related ancestry from different contact zones, while Steppe Maykop individuals harbour additional Upper Palaeolithic Siberian and Native American related ancestry.
biorxiv genomics 200-500-users 2018A genetically encoded fluorescent sensor for in vivo imaging of GABA, bioRxiv, 2018-05-15
AbstractCurrent techniques for monitoring GABA, the primary inhibitory neurotransmitter in vertebrates, cannot follow ephemeral transients in intact neural circuits. We applied the design principles used to create iGluSnFR, a fluorescent reporter of synaptic glutamate, to develop a GABA sensor using a protein derived from a previously unsequenced Pseudomonas fluorescens strain. Structure-guided mutagenesis and library screening led to a usable iGABASnFR (ΔFFmax ~ 2.5, Kd ~ 9 μM, good specificity, adequate kinetics). iGABASnFR is genetically encoded, detects single action potential-evoked GABA release events in culture, and produces readily detectable fluorescence increases in vivo in mice and zebrafish. iGABASnFR enabled tracking of (1) mitochondrial GABA content and its modulation by an anticonvulsant; (2) swimming-evoked GABAergic transmission in zebrafish cerebellum; (3) GABA release events during inter-ictal spikes and seizures in awake mice; and (4) GABAergic tone decreases during isoflurane anesthesia. iGABASnFR will permit high spatiotemporal resolution of GABA signaling in intact preparations.
biorxiv neuroscience 100-200-users 2018Optimization of Golden Gate assembly through application of ligation sequence-dependent fidelity and bias profiling, bioRxiv, 2018-05-15
ABSTRACTModern synthetic biology depends on the manufacture of large DNA constructs from libraries of genes, regulatory elements or other genetic parts. Type IIS restriction enzyme-dependent DNA assembly methods (e.g., Golden Gate) enable rapid one-pot, ordered, multi-fragment DNA assembly, facilitating the generation of high-complexity constructs. The order of assembly of genetic parts is determined by the ligation of flanking Watson-Crick base-paired overhangs. The ligation of mismatched overhangs leads to erroneous assembly, and the need to avoid such pairings has typically been accomplished by using small sets of empirically vetted junction pairs, limiting the number of parts that can be joined in a single reaction. Here, we report the use of a comprehensive method for profiling end-joining ligation fidelity and bias to predict highly accurate sets of connections for ligation-based DNA assembly methods. This data set allows quantification of sequence-dependent ligation efficiency and identification of mismatch-prone pairings. The ligation profile accurately predicted junction fidelity in ten-fragment Golden Gate assembly reactions, and enabled efficient assembly of a lac cassette from up to 24-fragments in a single reaction. Application of the ligation fidelity profile to inform choice of junctions thus enables highly flexible assembly design, with >20 fragments in a single reaction.
biorxiv synthetic-biology 0-100-users 2018The Repertoire of Mutational Signatures in Human Cancer, bioRxiv, 2018-05-15
ABSTRACTSomatic mutations in cancer genomes are caused by multiple mutational processes each of which generates a characteristic mutational signature. Using 84,729,690 somatic mutations from 4,645 whole cancer genome and 19,184 exome sequences encompassing most cancer types we characterised 49 single base substitution, 11 doublet base substitution, four clustered base substitution, and 17 small insertion and deletion mutational signatures. The substantial dataset size compared to previous analyses enabled discovery of new signatures, separation of overlapping signatures and decomposition of signatures into components that may represent associated, but distinct, DNA damage, repair andor replication mechanisms. Estimation of the contribution of each signature to the mutational catalogues of individual cancer genomes revealed associations with exogenous and endogenous exposures and defective DNA maintenance processes. However, many signatures are of unknown cause. This analysis provides a systematic perspective on the repertoire of mutational processes contributing to the development of human cancer including a comprehensive reference set of mutational signatures in human cancer.
biorxiv cancer-biology 100-200-users 2018