Evolutionary dynamics of phage resistance in bacterial biofilms, bioRxiv, 2019-02-17

Interactions among bacteria and their viral predators, the bacteriophages, are likely among the most common ecological phenomena on Earth. The constant threat of phage infection to bacterial hosts, and the imperative of achieving infection on the part of phages, drives an evolutionary contest in which phage-resistant bacteria emerge, often followed by phages with new routes of infection. This process has received abundant theoretical and experimental attention for decades and forms an important basis for molecular genetics and theoretical ecology and evolution. However, at present, we know very little about the nature of phage-bacteria interaction -- and the evolution of phage resistance -- inside the surface-bound communities that microbes usually occupy in natural environments. These communities, termed biofilms, are encased in a matrix of secreted polymers produced by their microbial residents. Biofilms are spatially constrained such that interactions become limited to neighbors or near-neighbors; diffusion of solutes and particulates is reduced; and there is pronounced heterogeneity in nutrient access and therefore physiological state. These factors can dramatically impact the way phage infections proceed even in simple, single-strain biofilms, but we still know little of their effect on phage resistance evolutionary dynamics. Here we explore this problem using a computational simulation framework customized for implementing phage infection inside multi-strain biofilms. Our simulations predict that it is far easier for phage-susceptible and phage- resistant bacteria to coexist inside biofilms relative to planktonic culture, where phages and hosts are well-mixed. We characterize the negative frequency dependent selection that underlies this coexistence, and we then test and confirm this prediction using an experimental model of biofilm growth measured with confocal microscopy at single-cell and single-phage resolution.

biorxiv microbiology 0-100-users 2019

Large, three-generation CEPH families reveal post-zygotic mosaicism and variability in germline mutation accumulation, bioRxiv, 2019-02-17

AbstractThe number of de novo mutations (DNMs) found in an offspring’s genome increases with both paternal and maternal age. But does the rate of mutation accumulation in human gametes differ across families? Using sequencing data from 33 large, three-generation CEPH families, we observed significant variability in parental age effects on DNM counts across families, with estimates ranging from 0.19 to 3.24 DNMs per year. Additionally, we found that approximately 3% of DNMs originated following primordial germ cell specification (PGCS) in a parent, and differed from non-mosaic germline DNMs in their mutational spectra. We also discovered that nearly 10% of candidate DNMs in the second generation were post-zygotic, and present in both somatic and germ cells; these gonosomal mutations occurred at equivalent frequencies on both parental haplotypes. Our results demonstrate that the rate of germline mutation accumulation varies among families with similar ancestry, and confirm that post-zygotic mosaicism is a substantial source of de novo mutations in humans.Data and code availability. Code used for statistical analysis and figure generation has been deposited on GitHub as a collection of annotated Jupyter Notebooks <jatsext-link xmlnsxlink=httpwww.w3.org1999xlink ext-link-type=uri xlinkhref=httpsgithub.comquinlan-labceph-dnm-manuscript>httpsgithub.comquinlan-labceph-dnm-manuscript<jatsext-link>. Data files containing high-confidence de novo mutations, as well as the gonosomal and post-primordial germ cell specification (PGCS) mosaic mutations, are included with these Notebooks. To mitigate compatibility issues, we have also made all notebooks available in a Binder environment, accessible at the above GitHub repository.

biorxiv genetics 0-100-users 2019

A high-resolution, chromosome-assigned Komodo dragon genome reveals adaptations in the cardiovascular, muscular, and chemosensory systems of monitor lizards, bioRxiv, 2019-02-16

Monitor lizards are unique among ectothermic reptiles in that they have a high aerobic capacity and distinctive cardiovascular physiology which resembles that of endothermic mammals. We have sequenced the genome of the Komodo dragon (Varanus komodoensis), the largest extant monitor lizard, and present a high resolution de novo chromosome-assigned genome assembly for V. komodoensis, generated with a hybrid approach of long-range sequencing and single molecule physical mapping. Comparing the genome of V. komodoensis with those of related species showed evidence of positive selection in pathways related to muscle energy metabolism, cardiovascular homeostasis, and thrombosis. We also found species-specific expansions of a chemoreceptor gene family related to pheromone and kairomone sensing in V. komodoensis and several other lizard lineages. Together, these evolutionary signatures of adaptation reveal genetic underpinnings of the unique Komodo sensory, cardiovascular, and muscular systems, and suggest that selective pressure altered thrombosis genes to help Komodo dragons evade the anticoagulant effects of their own saliva. As the only sequenced monitor lizard genome, the Komodo dragon genome is an important resource for understanding the biology of this lineage and of reptiles worldwide.

biorxiv genomics 100-200-users 2019

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo