Dissociation of solid tumour tissues with cold active protease for single-cell RNA-seq minimizes conserved collagenase-associated stress responses, bioRxiv, 2019-06-27
AbstractBackgroundSingle-cell RNA sequencing (scRNAseq) is a powerful tool for studying complex biological systems, such as tumour heterogeneity and tissue microenvironments. However, the sources of technical and biological variation in primary solid tumour tissues and patient-derived mouse xenografts for scRNAseq, are not well understood. Here, we used low temperature (6°C) protease and collagenase (37°C) to identify the transcriptional signatures associated with tissue dissociation across a diverse scRNAseq dataset comprising 128,481 cells from patient cancer tissues, patient-derived breast cancer xenografts and cancer cell lines.ResultsWe observe substantial variation in standard quality control (QC) metrics of cell viability across conditions and tissues. From FACS sorted populations gated for cell viability, we identify a sub-population of dead cells that would pass standard data filtering practices, and quantify the extent to which their transcriptomes differ from live cells. We identify a further subpopulation of transcriptomically “dying” cells that exhibit up-regulation of MHC class I transcripts, in contrast with live and fully dead cells. From the contrast between tissue protease dissociation at 37°C or 6°C, we observe that collagenase digestion results in a stress response. We derive a core gene set of 512 heat shock and stress response genes, including FOS and JUN, induced by collagenase (37°C), which are minimized by dissociation with a cold active protease (6°C). While induction of these genes was highly conserved across all cell types, cell type-specific responses to collagenase digestion were observed in patient tissues. We observe that the yield of cancer and non-cancer cell types varies between tissues and dissociation methods.ConclusionsThe method and conditions of tumour dissociation influence cell yield and transcriptome state and are both tissue and cell type dependent. Interpretation of stress pathway expression differences in cancer single cell studies, including components of surface immune recognition such as MHC class I, may be especially confounded. We define a core set of 512 genes that can assist with identification of such effects in dissociated scRNA-seq experiments.
biorxiv genomics 200-500-users 2019DNA-loop extruding condensin complexes can traverse one another, bioRxiv, 2019-06-27
Condensin, a key member of the Structure Maintenance of Chromosome (SMC) protein complexes, has recently been shown to be a motor that extrudes loops of DNA1. It remains unclear, however, how condensin complexes work together to collectively package DNA into the chromosomal architecture. Here, we use time-lapse single-molecule visualization to study mutual interactions between two DNA-loop-extruding yeast condensins. We find that these one-side-pulling motor proteins are able to dynamically change each other’s DNA loop sizes, even when located large distances apart. When coming into close proximity upon forming a loop within a loop, condensin complexes are, surprisingly, able to traverse each other and form a new type of loop structure, which we term Z loop – three double-stranded DNA helices aligned in parallel with one condensin at each edge. These Z-loops can fill gaps left by single loops and can form symmetric dimer motors that reel in DNA from both sides. These new findings indicate that condensin may achieve chromosomal compaction using a variety of looping structures.
biorxiv biophysics 100-200-users 2019Increasing the efficiency of long-read sequencing for hybrid assembly with k-mer-based multiplexing, bioRxiv, 2019-06-25
AbstractHybrid genome assembly has emerged as an important technique in bacterial genomics, but cost and labor requirements limit large-scale application. We present Ultraplexing, a method to improve per-sample sequencing cost and hands-on-time of Nanopore sequencing for hybrid assembly by at least 50%, compared to molecular barcoding while maintaining high assembly quality (Quality Value; QV ≥ 42). Ultraplexing requires the availability of Illumina data and uses inter-sample genetic variability to assign reads to isolates, which obviates the need for molecular barcoding. Thus, Ultraplexing can enable significant sequencing and labor cost reductions in large-scale bacterial genome projects.
biorxiv bioinformatics 100-200-users 2019What is the test-retest reliability of common task-fMRI measures? New empirical evidence and a meta-analysis, bioRxiv, 2019-06-25
AbstractIdentifying brain biomarkers of disease risk is a growing priority in neuroscience. The ability to identify meaningful biomarkers is limited by measurement reliability; unreliable measures are unsuitable for predicting clinical outcomes. Measuring brain activity using task-fMRI is a major focus of biomarker development; however, the reliability of task-fMRI has not been systematically evaluated. We present converging evidence demonstrating poor reliability of task-fMRI measures. First, a meta-analysis of 90 experiments (N=1,008) revealed poor overall reliability (mean ICC=.397). Second, the test-retest reliabilities of activity in a priori regions of interest across 11 common fMRI tasks collected in the context of the Human Connectome Project (N=45) and the Dunedin Study (N=20) were poor (ICCs=.067-.485). Collectively, these findings demonstrate that common task-fMRI measures are not currently suitable for brain biomarker discovery or individual differences research. We review how this state of affairs came to be and highlight avenues for improving task-fMRI reliability.
biorxiv neuroscience 200-500-users 2019A receptor for herbivore-associated molecular patterns mediates plant immunity, bioRxiv, 2019-06-23
AbstractPlant-herbivore interactions are ubiquitous across nature and drive major agricultural losses. Inducible defense responses triggered through immune recognition aid in host plant protection; however, specific ligand-receptor pairs mediating the initial perception of herbivory remain unknown. Plants in the subtribe Phaseolinae detect herbivore-associated peptides in caterpillar oral secretions and the defined ligands are proteolytic fragments of chloroplastic ATP synthase termed inceptins. Using forward genetic mapping of inceptin-induced responses, we identify a cowpea (Vigna unguiculata) leucine-rich repeat receptor-like protein as an inceptin receptor (INR) sufficient for elicitor-induced responses and enhanced defense against armyworms (Spodoptera exigua). INR defines a receptor by which plants perceive herbivore-associated molecular patterns (HAMPs) and expands the paradigm of surface immune recognition to attack with mandibles.One Sentence SummaryA plant cell surface receptor directly perceives peptides associated with caterpillar herbivory.
biorxiv plant-biology 100-200-users 2019Brain state stability during working memory is explained by network control theory, modulated by dopamine D1D2 receptor function, and diminished in schizophrenia, bioRxiv, 2019-06-23
Dynamical brain state transitions are critical for flexible working memory but the network mechanisms are incompletely understood. Here, we show that working memory entails brain-wide switching between activity states. The stability of states relates to dopamine D1 receptor gene expression while state transitions are influenced by D2 receptor expression and pharmacological modulation. Schizophrenia patients show altered network control properties, including a more diverse energy landscape and decreased stability of working memory representations.
biorxiv neuroscience 0-100-users 2019