Single-cell transcriptomics reveals expansion of cytotoxic CD4 T-cells in supercentenarians, bioRxiv, 2019-05-20

AbstractSupercentenarians, people who have reached 110 years of age, are a great model of healthy aging. Their characteristics of delayed onset of age-related diseases and compression of morbidity imply that their immune system remains functional. Here we performed single-cell transcriptome analysis of 61,202 peripheral blood mononuclear cells (PBMCs), derived from seven supercentenarians and five younger controls. We identified a marked increase of cytotoxic CD4 T-cells (CD4 CTLs) coupled with a substantial reduction of B-cells as a novel signature of supercentenarians. Furthermore, single-cell T-cell receptor sequencing of two supercentenarians revealed that CD4 CTLs had accumulated through massive clonal expansion, with the most frequent clonotypes accounting for 15% to 35% of the entire CD4 T-cell population. The CD4 CTLs exhibited substantial heterogeneity in their degree of cytotoxicity as well as a nearly identical transcriptome to that of CD8 CTLs. This indicates that CD4 CTLs utilize the transcriptional program of the CD8 lineage while retaining CD4 expression. Our study reveals that supercentenarians have unique characteristics in their circulating lymphocytes, which may represent an essential adaptation to achieve exceptional longevity by sustaining immune responses to infections and diseases.SignificanceExceptionally long-lived people such as supercentenarians tend to spend their entire lives in good health, implying that their immune system remains active to protect against infections and tumors. However, their immunological condition has been largely unexplored. We profiled thousands of circulating immune cells from supercentenarians at single-cell resolution, and identified a large number of CD4 T-cells that have cytotoxic features. This characteristic is very unique to supercentenarians, because generally CD4 T-cells have helper, but not cytotoxic, functions under physiological conditions. We further profiled their T-cell receptors, and revealed that the cytotoxic CD4 T-cells were accumulated through clonal expansion. The conversion of helper CD4 T-cells to a cytotoxic variety might be an adaptation to the late stage of aging.

biorxiv immunology 100-200-users 2019

Spatiotemporal limits of optogenetic manipulations in cortical circuits, bioRxiv, 2019-05-20

AbstractNeuronal inactivation is commonly used to assess the involvement of groups of neurons in specific brain functions. Optogenetic tools allow manipulations of genetically and spatially defined neuronal populations with excellent temporal resolution. However, the targeted neurons are coupled with other neural populations over multiple length scales. As a result, the effects of localized optogenetic manipulations are not limited to the targeted neurons, but produces spatially extended excitation and inhibition with rich dynamics. Here we benchmarked several optogenetic silencers in transgenic mice and with viral gene transduction, with the goal to inactivate excitatory neurons in small regions of neocortex. We analyzed the effects of the perturbations in vivo using electrophysiology. Channelrhodopsin activation of GABAergic neurons produced more effective photoinhibition of pyramidal neurons than direct photoinhibition using light-gated ion pumps. We made transgenic mice expressing the light-dependent chloride channel GtACR under the control of Cre-recombinase. Activation of GtACR produced the most potent photoinhibition. For all methods, localized photostimuli produced photoinhibition that extended substantially beyond the spread of light in tissue, although different methods had slightly different resolution limits (radius of inactivation, 0.5 mm to 1 mm). The spatial profile of photoinhibition was likely shaped by strong coupling between cortical neurons. Over some range of photostimulation, circuits produced the “paradoxical effect”, where excitation of inhibitory neurons reduced activity in these neurons, together with pyramidal neurons, a signature of inhibition-stabilized neural networks. The offset of optogenetic inactivation was followed by rebound excitation in a light dose-dependent manner, which can be mitigated by slowly varying photostimuli, but at the expense of time resolution. Our data offer guidance for the design of in vivo optogenetics experiments and suggest how these experiments can reveal operating principles of neural circuits.

biorxiv neuroscience 100-200-users 2019

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo