Massive gene presenceabsence variation in the mussel genome as an adaptive strategy first evidence of a pan-genome in Metazoa, bioRxiv, 2019-09-26
AbstractMussels are ecologically and economically relevant edible marine bivalves, highly invasive and resilient to biotic and abiotic stressors causing recurrent massive mortalities in other species. Here we show that the Mediterranean mussel Mytilus galloprovincialis has a complex pan-genomic architecture, which includes a core set of 45,000 genes shared by all individuals plus a surprisingly high number of dispensable genes (∼15,000). The latter are subject to presenceabsence variation (PAV), i.e., they may be entirely missing in a given individual and, when present, they are frequently found as a single copy. The enrichment of dispensable genes in survival functions suggests an adaptive value for PAV, which might be the key to explain the extraordinary capabilities of adaptation and invasiveness of this species. Our study underpins a unique metazoan pan-genome architecture only previously described in prokaryotes and in a few non-metazoan eukaryotes, but that might also characterize other marine invertebrates.Significance statementIn animals, intraspecific genomic diversity is generally thought to derive from relatively small-scale variants, such as single nucleotide polymorphisms, small indels, duplications, inversions and translocations. On the other hand, large-scale structural variations which involve the loss of genomic regions encoding protein-coding genes in some individuals (i.e. presenceabsence variation, PAV) have been so far only described in bacteria and, occasionally, in plants and fungi. Here we report the first evidence of a pan-genome in the animal kingdom, revealing that 25% of the genes of the Mediterranean mussel are subject to PAV. We show that this unique feature might have an adaptive value, due to the involvement of dispensable genes in functions related with defense and survival.
biorxiv genetics 100-200-users 2019Tximeta reference sequence checksums for provenance identification in RNA-seq, bioRxiv, 2019-09-26
AbstractCorrect annotation metadata is critical for reproducible and accurate RNA-seq analysis. When files are shared publicly or among collaborators with incorrect or missing annotation metadata, it becomes difficult or impossible to reproduce bioinformatic analyses from raw data. It also makes it more difficult to locate the transcriptomic features, such as transcripts or genes, in their proper genomic context, which is necessary for overlapping expression data with other datasets. We provide a solution in the form of an RBioconductor package tximeta that performs numerous annotation and metadata gathering tasks automatically on behalf of users during the import of transcript quantification files. The correct reference transcriptome is identified via a hashed checksum stored in the quantification output, and key transcript databases are downloaded and cached locally. The computational paradigm of automatically adding annotation metadata based on reference sequence checksums can greatly facilitate genomic workflows, by helping to reduce overhead during bioinformatic analyses, preventing costly bioinformatic mistakes, and promoting computational reproducibility. The tximeta package is available at <jatsext-link xmlnsxlink=httpwww.w3.org1999xlink ext-link-type=uri xlinkhref=httpsbioconductor.orgpackagestximeta>httpsbioconductor.orgpackagestximeta<jatsext-link>.
biorxiv bioinformatics 0-100-users 2019A processive rotary mechanism couples substrate unfolding and proteolysis in the ClpXP degradation machinery, bioRxiv, 2019-09-25
AbstractThe ClpXP degradation machine consists of a hexameric AAA+ unfoldase (ClpX) and a pair of heptameric serine protease rings (ClpP) that unfold, translocate, and subsequently degrade client proteins. ClpXP is an important target for drug development against infectious diseases. Although structures are available for isolated ClpX and ClpP rings, it remains unknown how symmetry mismatched ClpX and ClpP work in tandem for processive substrate translocation into the ClpP proteolytic chamber. Here we present cryo-EM structures of the substrate-bound ClpXP complex from Neisseria meningitidis at 2.3 to 3.3 Å resolution. The structures allow development of a model in which the cyclical hydrolysis of ATP is coupled to concerted motions of ClpX loops that lead to directional substrate translocation and ClpX rotation relative to ClpP. Our data add to the growing body of evidence that AAA+ molecular machines generate translocating forces by a common mechanism.
biorxiv biophysics 0-100-users 2019Dendritic calcium signals in rhesus macaque motor cortex drive an optical brain-computer interface, bioRxiv, 2019-09-25
AbstractCalcium imaging has rapidly developed into a powerful tool for recording from large populations of neurons in vivo. Imaging in rhesus macaque motor cortex can enable the discovery of new principles of motor cortical function and can inform the design of next generation brain-computer interfaces (BCIs). Surface two-photon (2P) imaging, however, cannot presently access somatic calcium signals of neurons from all layers of macaque motor cortex due to photon scattering. Here, we demonstrate an implant and imaging system capable of chronic, motion-stabilized two-photon (2P) imaging of calcium signals from in macaques engaged in a motor task. By imaging apical dendrites, some of which originated from deep layer 5 neurons, as as well as superficial cell bodies, we achieved optical access to large populations of deep and superficial cortical neurons across dorsal premotor (PMd) and gyral primary motor (M1) cortices. Dendritic signals from individual neurons displayed tuning for different directions of arm movement, which was stable across many weeks. Combining several technical advances, we developed an optical BCI (oBCI) driven by these dendritic signals and successfully decoded movement direction online. By fusing 2P functional imaging with CLARITY volumetric imaging, we verify that an imaged dendrite, which contributed to oBCI decoding, originated from a putative Betz cell in motor cortical layer 5. This approach establishes new opportunities for studying motor control and designing BCIs.
biorxiv neuroscience 0-100-users 2019Hue tuning curves in V4 change with visual context, bioRxiv, 2019-09-25
AbstractTo understand activity in the visual cortex, researchers typically investigate how parametric changes in stimuli affect neural activity. A fundamental tenet of this approach is that the response properties of neurons in one context, e.g. color stimuli, are representative of responses in other contexts, e.g. natural scenes. This assumption is not often tested. Here, for neurons in macaque area V4, we first estimated tuning curves for hue by presenting artificial stimuli of varying hue, and then tested whether these would correlate with hue tuning curves estimated from responses to natural images. We found that neurons’ hue tuning on artificial stimuli was not representative of their hue tuning on natural images, even if the neurons were strongly color-responsive. One explanation of this result is that neurons in V4 respond to interactions between hue and other visual features. This finding exemplifies how tuning curves estimated by varying a small number of stimulus features can communicate a small and potentially unrepresentative slice of the neural response function.
biorxiv neuroscience 0-100-users 2019An inducible genome editing system for plants, bioRxiv, 2019-09-23
ABSTRACTConditional manipulation of gene expression is a key approach to investigating the primary function of a gene in a biological process. While conditional and cell-type specific overexpression systems exist for plants, there are currently no systems available to disable a gene completely and conditionally. Here, we present a novel tool with which target genes can be efficiently conditionally knocked out at any developmental stage. The target gene is manipulated using the CRISPR-Cas9 genome editing technology, and conditionality is achieved with the well-established estrogen-inducible XVE system. Target genes can also be knocked-out in a cell-type specific manner. Our tool is easy to construct and will be particularly useful for studying genes which have null-alleles that are non-viable or show strong developmental defects.
biorxiv plant-biology 100-200-users 2019