Moving beyond P values Everyday data analysis with estimation plots, bioRxiv, 2018-07-26

Over the past 75 years, a number of statisticians have advised that the data-analysis method known as null-hypothesis significance testing (NHST) should be deprecated (Berkson, 1942; Halsey et al., 2015; Wasserstein et al., 2019). The limitations of NHST have been extensively discussed, with a broad consensus that current statistical practice in the biological sciences needs reform. However, there is less agreement on reform’s specific nature, with vigorous debate surrounding what would constitute a suitable alternative (Altman et al., 2000; Benjamin et al., 2017; Cumming and Calin-Jageman, 2016). An emerging view is that a more complete analytic technique would use statistical graphics to estimate effect sizes and evaluate their uncertainty (Cohen, 1994; Cumming and Calin-Jageman, 2016). As these estimation methods require only minimal statistical retraining, they have great potential to shift the current data-analysis culture away from dichotomous thinking towards quantitative reasoning (Claridge-Chang and Assam, 2016). The evolution of statistics has been inextricably linked to the development of quantitative displays that support complex visual reasoning (Tufte, 2001). We consider that the graphic we describe here as estimation plot is the most intuitive way to display the complete statistical information about experimental data sets. However, a major obstacle to adopting estimation plots is accessibility to suitable software. To lower this hurdle, we have developed free software that makes high-quality estimation plotting available to all. Here, we explain the rationale for estimation plots by contrasting them with conventional charts used to display data with NHST results, and describe how the use of these graphs affords five major analytical advantages.

biorxiv bioinformatics 500+-users 2018

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo