MSPminer abundance-based reconstitution of microbial pan-genomes from shotgun meta-genomic data, bioRxiv, 2017-08-09

AbstractMotivationAnalysis toolkits for shotgun metagenomic data achieve strain-level characterization of complex microbial communities by capturing intra-species gene content variation. Yet, these tools are hampered by the extent of reference genomes that are far from covering all microbial variability, as many species are still not sequenced or have only few strains available. Binning co-abundant genes obtained from de novo assembly is a powerful reference-free technique to discover and reconstitute gene repertoire of microbial species. While current methods accurately identify species core parts, they miss many accessory genes or split them into small gene groups that remain unassociated to core clusters.ResultsWe introduce MSPminer, a computationally efficient software tool that reconstitutes Metagenomic Species Pan-genomes (MSPs) by binning co-abundant genes across metagenomic samples. MSPminer relies on a new robust measure of proportionality coupled with an empirical classifier to group and distinguish not only species core genes but accessory genes also. Applied to a large scale metagenomic dataset, MSPminer successfully delineates in a few hours the gene repertoires of 1 661 microbial species with similar specificity and higher sensitivity than existing tools. The taxonomic annotation of MSPs reveals microorganisms hitherto unknown and brings coherence in the nomenclature of the species of the human gut microbiota. The provided MSPs can be readily used for taxonomic profiling and biomarkers discovery in human gut metagenomic samples. In addition, MSPminer can be applied on gene count tables from other ecosystems to perform similar analyses.AvailabilityThe binary is freely available for non-commercial users at enterome.frsitedownloads Contact florian.plaza-onate@inra.frSupplementary informationAvailable in the file named Supplementary Information.pdf

biorxiv bioinformatics 0-100-users 2017

Bioinformatics Core Competencies for Undergraduate Life Sciences Education, bioRxiv, 2017-08-04

AbstractBioinformatics is becoming increasingly central to research in the life sciences. However, despite its importance, bioinformatics skills and knowledge are not well integrated in undergraduate biology education. This curricular gap prevents biology students from harnessing the full potential of their education, limiting their career opportunities and slowing genomic research innovation. To advance the integration of bioinformatics into life sciences education, a framework of core bioinformatics competencies is needed. To that end, we here report the results of a survey of life sciences faculty in the United States about teaching bioinformatics to undergraduate life scientists. Responses were received from 1,260 faculty representing institutions in all fifty states with a combined capacity to educate hundreds of thousands of students every year. Results indicate strong, widespread agreement that bioinformatics knowledge and skills are critical for undergraduate life scientists, as well as considerable agreement about which skills are necessary. Perceptions of the importance of some skills varied with the respondent’s degree of training, time since degree earned, andor the Carnegie classification of the respondent’s institution. To assess which skills are currently being taught, we analyzed syllabi of courses with bioinformatics content submitted by survey respondents. Finally, we used the survey results, the analysis of syllabi, and our collective research and teaching expertise to develop a set of bioinformatics core competencies for undergraduate life sciences students. These core competencies are intended to serve as a guide for institutions as they work to integrate bioinformatics into their life sciences curricula.Significance StatementBioinformatics, an interdisciplinary field that uses techniques from computer science and mathematics to store, manage, and analyze biological data, is becoming increasingly central to modern biology research. Given the widespread use of bioinformatics and its impacts on societal problem-solving (e.g., in healthcare, agriculture, and natural resources management), there is a growing need for the integration of bioinformatics competencies into undergraduate life sciences education. Here, we present a set of bioinformatics core competencies for undergraduate life scientists developed using the results of a large national survey and the expertise of our working group of bioinformaticians and educators. We also present results from the survey on the importance of bioinformatics skills and the current state of integration of bioinformatics into biology education.

biorxiv bioinformatics 200-500-users 2017

Accurate detection of complex structural variations using single molecule sequencing, bioRxiv, 2017-07-29

AbstractStructural variations (SVs) are the largest source of genetic variation, but remain poorly understood because of limited genomics technology. Single molecule long read sequencing from Pacific Biosciences and Oxford Nanopore has the potential to dramatically advance the field, although their high error rates challenge existing methods. Addressing this need, we introduce open-source methods for long read alignment (NGMLR, <jatsext-link xmlnsxlink=httpwww.w3.org1999xlink ext-link-type=uri xlinkhref=httpsgithub.comphilresngmlr>httpsgithub.comphilresngmlr<jatsext-link>) and SV identification (Sniffles, <jatsext-link xmlnsxlink=httpwww.w3.org1999xlink ext-link-type=uri xlinkhref=httpsgithub.comfritzsedlazeckSniffles>httpsgithub.comfritzsedlazeckSniffles<jatsext-link>) that enable unprecedented SV sensitivity and precision, including within repeat-rich regions and of complex nested events that can have significant impact on human disorders. Examining several datasets, including healthy and cancerous human genomes, we discover thousands of novel variants using long reads and categorize systematic errors in short-read approaches. NGMLR and Sniffles are further able to automatically filter false events and operate on low amounts of coverage to address the cost factor that has hindered the application of long reads in clinical and research settings.

biorxiv bioinformatics 100-200-users 2017

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo