SynQuant An Automatic Tool to Quantify Synapses from Microscopy Images, bioRxiv, 2019-02-02
AbstractMotivationSynapses are essential to neural signal transmission. Therefore, quantification of synapses and related neurites from images is vital to gain insights into the underlying pathways of brain functionality and diseases. Despite the wide availability of synaptic punctum imaging data, several issues are impeding satisfactory quantification of these structures by current tools. First, the antibodies used for labeling synapses are not perfectly specific to synapses. These antibodies may exist in neurites or other cell compartments. Second, the brightness for different neurites and synaptic puncta is heterogeneous due to the variation of antibody concentration and synapse-intrinsic differences. Third, images often have low signal to noise ratio due to constraints of experiment facilities and availability of sensitive antibodies. These issues make the detection of synapses challenging and necessitates developing a new tool to easily and accurately quantify synapses.ResultsWe present an automatic probability-principled synapse detection algorithm and integrate it into our synapse quantification tool SynQuant. Derived from the theory of order statistics, our method controls the false discovery rate and improves the power of detecting synapses. SynQuant is unsupervised, works for both 2D and 3D data, and can handle multiple staining channels. Through extensive experiments on one synthetic and three real data sets with ground truth annotation or manual labeling, SynQuant was demonstrated to outperform peer specialized synapse detection tools as well as generic spot detection methods, including 4 unsupervised and 11 variants of 3 supervised methods.AvailabilityJava source code, Fiji plug-in, and test data available at <jatsext-link xmlnsxlink=httpwww.w3.org1999xlink ext-link-type=uri xlinkhref=httpsgithub.comyu-lab-vtSynQuant>httpsgithub.comyu-lab-vtSynQuant<jatsext-link>.Contactyug@vt.edu
biorxiv neuroscience 0-100-users 2019Freeze-frame imaging of synaptic activity using SynTagMA, bioRxiv, 2019-02-01
AbstractInformation within the brain travels from neuron to neuron across billions of synapses. At any given moment, only a small subset of neurons and synapses are active, but finding the active synapses in brain tissue has been a technical challenge. To tag active synapses in a user-defined time window, we developed SynTagMA. Upon 405 nm illumination, this genetically encoded marker of activity converts from green to red fluorescence if, and only if, it is bound to calcium. Targeted to presynaptic terminals, preSynTagMA allows discrimination between active and silent axons. Targeted to excitatory postsynapses, postSynTagMA creates a snapshot of synapses active just before photoconversion. To analyze large datasets, we developed software to identify and track the fluorescence of thousands of individual synapses in tissue. Together, these tools provide a high throughput method for repeatedly mapping active neurons and synapses in cell culture, slice preparations, and in vivo during behavior.
biorxiv neuroscience 100-200-users 2019The Arabidopsis thaliana pan-NLRome, bioRxiv, 2019-02-01
Disease is both among the most important selection pressures in nature and among the main causes of yield loss in agriculture. In plants, resistance to disease is often conferred by Nucleotide-binding Leucine-rich Repeat (NLR) proteins. These proteins function as intracellular immune receptors that recognize pathogen proteins and their effects on the plant. Consistent with evolutionarily dynamic interactions between plants and pathogens, NLRs are known to be encoded by one of the most variable gene families in plants, but the true extent of intraspecific NLR diversity has been unclear. Here, we define the majority of the Arabidopsis thaliana species-wide 'NLRome'. From NLR sequence enrichment and long-read sequencing of 65 diverse A. thaliana accessions, we infer that the pan-NLRome saturates with approximately 40 accessions. Despite the high diversity of NLRs, half of the pan-NLRome is present in most accessions. We chart the architectural diversity of NLR proteins, identify novel architectures, and quantify the selective forces that act on specific NLRs, domains, and positions. Our study provides a blueprint for defining the pan-NLRome of plant species.
biorxiv plant-biology 100-200-users 2019Ensuring meiotic DNA break formation in the mouse pseudoautosomal region Data File S1, bioRxiv, 2019-01-31
Sex chromosomes in males share only a diminutive homologous segment, the pseudoautosomal region (PAR), wherein meiotic double-strand breaks (DSBs), pairing, and crossing over must occur for correct segregation. How cells ensure PAR recombination is unknown. Here we delineate cis- and trans-acting factors that control PAR ultrastructure and make the PAR the hottest area of DSB formation in the male mouse genome. Prior to DSB formation, PAR chromosome axes elongate, sister chromatids separate, and DSB-promoting factors hyperaccumulate. These phenomena are linked to mo-2 minisatellite arrays and require ANKRD31 protein. We propose that the repetitive PAR sequence confers unique chromatin and higher order structures crucial for DSB formation, X-Y pairing, and recombination. Our findings establish a mechanistic paradigm of mammalian sex chromosome segregation during spermatogenesis.
biorxiv molecular-biology 100-200-users 2019Ensuring meiotic DNA break formation in the mouse pseudoautosomal region, bioRxiv, 2019-01-31
Sex chromosomes in males share only a diminutive homologous segment, the pseudoautosomal region (PAR), wherein meiotic double-strand breaks (DSBs), pairing, and crossing over must occur for correct segregation. How cells ensure PAR recombination is unknown. Here we delineate cis-and trans-acting factors that control PAR ultrastructure and make the PAR the hottest area of DSB formation in the male mouse genome. Prior to DSB formation, PAR chromosome axes elongate, sister chromatids separate, and DSB-promoting factors hyperaccumulate. These phenomena are linked to mo-2 minisatellite arrays and require ANKRD31 protein. We propose that the repetitive PAR sequence confers unique chromatin and higher order structures crucial for DSB formation, X–Y pairing, and recombination. Our findings establish a mechanistic paradigm of mammalian sex chromosome segregation during spermatogenesis.
biorxiv molecular-biology 100-200-users 2019Genotype-phenotype relationships in children with Copy Number Variants associated with high neuropsychiatric risk Findings from the case-control IMAGINE-ID cohort in the United Kingdom, bioRxiv, 2019-01-31
AbstractBackgroundA variety of Copy Number Variants are associated with a high risk of neurodevelopmental and psychiatric disorders (ND-CNVs). We aimed to characterise the impact of ND-CNVs on childhood development and investigate whether different ND-CNVs lead to distinct and specific patterns of cognitive and behavioural outcomes.Methods258 children with ND-CNVs (13 CNVs across 9 loci) were systematically assessed for psychiatric disorders as well as broader traits of neurodevelopmental, cognitive and psychopathological origin. A comparison was made with 106 control siblings, in order to test the hypothesis that phenotypes would differ by genotype, both quantitatively, in terms of severity, and qualitatively in the pattern of associated impairments.Outcomes79.8% of ND-CNVs carriers met criteria for one or more psychiatric disorders (OR=13.8 compared to controls) the risk of ADHD (OR=6.9), ODD (OR=3.6), anxiety disorders (OR=2.9), and ASD traits (OR=44.1) was particularly high. ND-CNVs carriers were impaired across all neurodevelopmental, cognitive, and psychopathological traits relative to controls. Only moderate quantitative and qualitative differences in phenotypic profile were found between genotypes. In general, the range of phenotypes was broadly similar for all ND-CNV genotypes. Traits did show some evidence of genotypic specificity, however the specific genotype accounted for a low proportion of variance in outcome (5-20% depending on trait).InterpretationThe 13 ND-CNVs studied have a similar range of adverse effects on childhood neurodevelopment, despite subtle quantitative and qualitative differences. Our findings suggest that genomic risk for neuropsychiatric disorder has pleiotropic effects on multiple processes and neural circuits, and provides important implications for research into genotype-phenotype relationships within psychiatry.FundingThe Medical Research Council and the Waterloo FoundationResearch in contextEvidence before this studySeveral Copy Number Variants (CNVs) have been associated with high risk of development of child and adult neuropsychiatric disorders. Increasingly young children with developmental delay referred for genetic testing are being diagnosed with neurodevelopmental and psychiatric risk CNVs (referred to as ND-CNVs hereafter). It remains unclear whether different genotypes are associated with specific cognitive and behavioural phenotypes or whether these outcomes are non-specific. We searched PubMed for English language studies published from database inception until January 10th, 2019 that investigated the relationship between CNVs and cognitive and behavioural outcomes. Search terms included “CNV”, “genomics”, “1q21.1”, “2p16.3”, “NRXN1”, “9q34”, “Kleefstra Syndrome”, “15q11.2”, “15q13.3”, “16p11.2”, “22q11.2”, “psychiatry”, and “cognition”. Preliminary studies have indicated that deletions and duplications at the same loci may differ in cognitive and behavioural phenotypes. However, to date, there have been limited studies that contrasted the phenotypes of ND-CNVs across several loci on a range of cognitive and behavioural domains.Added value of this studyWe found that young people carrying a ND-CNV were at considerably increased risk for neuropsychiatric disorder and impairments across a range of neurodevelopmental, psychopathological, cognitive, social, sleep and motor traits. Within ND-CNV carriers, comparisons between genotypes indicated moderate quantitative and qualitative differences in overall phenotypic profile, with evidence that severity of impairment was similar across all genotypes for some traits (e.g. mood problems, sleep impairments, peer problems, and sustained attention) whereas for other traits there was evidence of genotype specific effects on severity (e.g., IQ, spatial planning, processing speed, subclinical psychotic experiences, ASD traits, motor coordination total psychiatric symptomatology, particularly anxiety, ADHD, and conduct related traits). However the proportion of variance explained by genotype was low, 5-20% depending on trait, indicating that overall ND-CNVs lead to similar neurodevelopmental outcomes. It is important that genotype-phenotype relationships are viewed through a developmental lens as some phenotypic outcomes were found to be associated with age.Implications of all the available evidenceOur work highlights that children who carry a ND-CNV represent a patient group that warrants clinical and educational attention for a broad range of cognitive and behavioural impairments and that commonalities in clinically relevant neurodevelopmental impairments exist across ND-CNVs. This group of young people could benefit from the development of a general care pathway, to which genotype-specific recommendations can be added where needed. Our work indicates that the relationship between genotype and neurodevelopmental phenotype is complex and that future research will need to take a global systems approach and not be narrowly focused on single phenotypes.
biorxiv genomics 100-200-users 2019