SynQuant An Automatic Tool to Quantify Synapses from Microscopy Images, bioRxiv, 2019-02-02

AbstractMotivationSynapses are essential to neural signal transmission. Therefore, quantification of synapses and related neurites from images is vital to gain insights into the underlying pathways of brain functionality and diseases. Despite the wide availability of synaptic punctum imaging data, several issues are impeding satisfactory quantification of these structures by current tools. First, the antibodies used for labeling synapses are not perfectly specific to synapses. These antibodies may exist in neurites or other cell compartments. Second, the brightness for different neurites and synaptic puncta is heterogeneous due to the variation of antibody concentration and synapse-intrinsic differences. Third, images often have low signal to noise ratio due to constraints of experiment facilities and availability of sensitive antibodies. These issues make the detection of synapses challenging and necessitates developing a new tool to easily and accurately quantify synapses.ResultsWe present an automatic probability-principled synapse detection algorithm and integrate it into our synapse quantification tool SynQuant. Derived from the theory of order statistics, our method controls the false discovery rate and improves the power of detecting synapses. SynQuant is unsupervised, works for both 2D and 3D data, and can handle multiple staining channels. Through extensive experiments on one synthetic and three real data sets with ground truth annotation or manual labeling, SynQuant was demonstrated to outperform peer specialized synapse detection tools as well as generic spot detection methods, including 4 unsupervised and 11 variants of 3 supervised methods.AvailabilityJava source code, Fiji plug-in, and test data available at <jatsext-link xmlnsxlink=httpwww.w3.org1999xlink ext-link-type=uri xlinkhref=httpsgithub.comyu-lab-vtSynQuant>httpsgithub.comyu-lab-vtSynQuant<jatsext-link>.Contactyug@vt.edu

biorxiv neuroscience 0-100-users 2019

Genotype-phenotype relationships in children with Copy Number Variants associated with high neuropsychiatric risk Findings from the case-control IMAGINE-ID cohort in the United Kingdom, bioRxiv, 2019-01-31

AbstractBackgroundA variety of Copy Number Variants are associated with a high risk of neurodevelopmental and psychiatric disorders (ND-CNVs). We aimed to characterise the impact of ND-CNVs on childhood development and investigate whether different ND-CNVs lead to distinct and specific patterns of cognitive and behavioural outcomes.Methods258 children with ND-CNVs (13 CNVs across 9 loci) were systematically assessed for psychiatric disorders as well as broader traits of neurodevelopmental, cognitive and psychopathological origin. A comparison was made with 106 control siblings, in order to test the hypothesis that phenotypes would differ by genotype, both quantitatively, in terms of severity, and qualitatively in the pattern of associated impairments.Outcomes79.8% of ND-CNVs carriers met criteria for one or more psychiatric disorders (OR=13.8 compared to controls) the risk of ADHD (OR=6.9), ODD (OR=3.6), anxiety disorders (OR=2.9), and ASD traits (OR=44.1) was particularly high. ND-CNVs carriers were impaired across all neurodevelopmental, cognitive, and psychopathological traits relative to controls. Only moderate quantitative and qualitative differences in phenotypic profile were found between genotypes. In general, the range of phenotypes was broadly similar for all ND-CNV genotypes. Traits did show some evidence of genotypic specificity, however the specific genotype accounted for a low proportion of variance in outcome (5-20% depending on trait).InterpretationThe 13 ND-CNVs studied have a similar range of adverse effects on childhood neurodevelopment, despite subtle quantitative and qualitative differences. Our findings suggest that genomic risk for neuropsychiatric disorder has pleiotropic effects on multiple processes and neural circuits, and provides important implications for research into genotype-phenotype relationships within psychiatry.FundingThe Medical Research Council and the Waterloo FoundationResearch in contextEvidence before this studySeveral Copy Number Variants (CNVs) have been associated with high risk of development of child and adult neuropsychiatric disorders. Increasingly young children with developmental delay referred for genetic testing are being diagnosed with neurodevelopmental and psychiatric risk CNVs (referred to as ND-CNVs hereafter). It remains unclear whether different genotypes are associated with specific cognitive and behavioural phenotypes or whether these outcomes are non-specific. We searched PubMed for English language studies published from database inception until January 10th, 2019 that investigated the relationship between CNVs and cognitive and behavioural outcomes. Search terms included “CNV”, “genomics”, “1q21.1”, “2p16.3”, “NRXN1”, “9q34”, “Kleefstra Syndrome”, “15q11.2”, “15q13.3”, “16p11.2”, “22q11.2”, “psychiatry”, and “cognition”. Preliminary studies have indicated that deletions and duplications at the same loci may differ in cognitive and behavioural phenotypes. However, to date, there have been limited studies that contrasted the phenotypes of ND-CNVs across several loci on a range of cognitive and behavioural domains.Added value of this studyWe found that young people carrying a ND-CNV were at considerably increased risk for neuropsychiatric disorder and impairments across a range of neurodevelopmental, psychopathological, cognitive, social, sleep and motor traits. Within ND-CNV carriers, comparisons between genotypes indicated moderate quantitative and qualitative differences in overall phenotypic profile, with evidence that severity of impairment was similar across all genotypes for some traits (e.g. mood problems, sleep impairments, peer problems, and sustained attention) whereas for other traits there was evidence of genotype specific effects on severity (e.g., IQ, spatial planning, processing speed, subclinical psychotic experiences, ASD traits, motor coordination total psychiatric symptomatology, particularly anxiety, ADHD, and conduct related traits). However the proportion of variance explained by genotype was low, 5-20% depending on trait, indicating that overall ND-CNVs lead to similar neurodevelopmental outcomes. It is important that genotype-phenotype relationships are viewed through a developmental lens as some phenotypic outcomes were found to be associated with age.Implications of all the available evidenceOur work highlights that children who carry a ND-CNV represent a patient group that warrants clinical and educational attention for a broad range of cognitive and behavioural impairments and that commonalities in clinically relevant neurodevelopmental impairments exist across ND-CNVs. This group of young people could benefit from the development of a general care pathway, to which genotype-specific recommendations can be added where needed. Our work indicates that the relationship between genotype and neurodevelopmental phenotype is complex and that future research will need to take a global systems approach and not be narrowly focused on single phenotypes.

biorxiv genomics 100-200-users 2019

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo