Single-cell in situ transcriptomic map of astrocyte cortical layer diversity, bioRxiv, 2018-10-03

AbstractDuring organogenesis, patterns and gradients of gene expression underlie organization and diversified cell specification to generate complex tissue architecture. While the cerebral cortex is organized into six excitatory neuronal layers, it is unclear whether glial cells are diversified to mimic neuronal laminae or show distinct layering. To determine the molecular architecture of the mammalian cortex, we developed a high content pipeline that can quantify single-cell gene expression in situ. The Large-area Spatial Transcriptomic (LaST) map confirmed expected cortical neuron layer organization and also revealed a novel neuronal identity signature. Screening 46 candidate genes for astrocyte diversity across the cortex, we identified grey matter superficial, mid and deep astrocyte identities in gradient layer patterns that were distinct from neurons. Astrocyte layers formed in early postnatal cortex and mostly persisted in adult mouse and human cortex. Mutations that shifted neuronal post-mitotic identity or organization were sufficient to alter glial layering, indicating an instructive role for neuronal cues. In normal mouse cortex, astrocyte layer patterns showed area diversity between functionally distinct cortical regions. These findings indicate that excitatory neurons and astrocytes cells are organized into distinct lineage-associated laminae, which give rise to higher order neuroglial complexity of cortical architecture.

biorxiv neuroscience 0-100-users 2018

A mouse tissue atlas of small non-coding RNA, bioRxiv, 2018-09-29

SUMMARYSmall non-coding RNAs (ncRNAs) play a vital role in a broad range of biological processes both in health and disease. A comprehensive quantitative reference of small ncRNA expression would significantly advance our understanding of ncRNA roles in shaping tissue functions. Here, we systematically profiled the levels of five ncRNA classes (miRNA, snoRNA, snRNA, scaRNA and tRNA fragments) across eleven mouse tissues by deep sequencing. Using fourteen biological replicates spanning both sexes, we identified that ~ 30% of small ncRNAs are distributed across the body in a tissue-specific manner with some are also being sexually dimorphic. We found that miRNAs are subject to “arm switching” between healthy tissues and that tRNA fragments are retained within tissues in both a gene- and a tissue-specific manner. Out of eleven profiled tissues we confirmed that brain contains the largest number of unique small ncRNA transcripts, some of which were previously annotated while others are identified for the first time in this study. Furthermore, by combining these findings with single-cell ATAC-seq data, we were able to connect identified brain-specific ncRNA with their cell types of origin. These results yield the most comprehensive characterization of specific and ubiquitous small RNAs in individual murine tissues to date, and we expect that this data will be a resource for the further identification of ncRNAs involved in tissue-function in health and dysfunction in disease.HIGHLIGHTS<jatslist list-type=simple><jatslist-item>-An atlas of tissue levels of multiple small ncRNA classes generated from 14 biological replicates of both sexes across 11 tissues<jatslist-item><jatslist-item>-Distinct distribution patterns of miRNA arms and tRNA fragments across tissues suggest the existence of tissue-specific mechanisms of ncRNA cleavage and retention<jatslist-item><jatslist-item>-miRNA expression is sex specific in healthy tissues<jatslist-item><jatslist-item>-Small RNA-seq and scATAC-seq data integration produce a detailed map of cell-type specific ncRNA profiles in the mouse brain<jatslist-item>

biorxiv genomics 0-100-users 2018

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo