Amygdala neuronal ensembles dynamically encode behavioral states, bioRxiv, 2018-09-25
AbstractInternal states, including affective or homeostatic states, are important behavioral motivators. The amygdala is a key brain region involved in the regulation of motivated behaviors, yet how distinct internal states are represented in amygdala circuits is unknown. Here, by imaging somatic neural calcium dynamics in freely moving mice, we identify changes in the relative activity levels of two major, non-overlapping populations of principal neurons in the basal nucleus of the amygdala (BA) that predict switches between exploratory and non-exploratory (defensive, anxiety-like) behavioral states across different environments. Moreover, the amygdala widely broadcasts internal state information via several output pathways to larger brain networks, and sensory responses in BA occur independently of behavioral state encoding. Thus, the brain processes external stimuli and internal states in an orthogonal manner, which may facilitate rapid and flexible selection of appropriate, state-dependent behavioral responses.
biorxiv neuroscience 0-100-users 2018High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes, bioRxiv, 2018-09-25
AbstractHigh-throughput single-cell RNA-Sequencing is a powerful technique for gene expression profiling of complex and heterogeneous cellular populations such as the immune system. However, these methods only provide short-read sequence from one end of a cDNA template, making them poorly suited to the investigation of gene-regulatory events such as mRNA splicing, adaptive immune responses or somatic genome evolution. To address this challenge, we have developed a method that combines targeted long-read sequencing with short-read based transcriptome profiling of barcoded single cell libraries generated by droplet-based partitioning. We use Repertoire And Gene Expression sequencing (RAGE-seq) to accurately characterize full-length T cell (TCR) and B cell (BCR) receptor sequences and transcriptional profiles of more than 7,138 lymphocytes sampled from the primary tumour and draining lymph node of a breast cancer patient. With this method we show that somatic mutation, alternate splicing and clonal evolution of T and B lymphocytes can be tracked across these tissue compartments. Our results demonstrate that RAGE-Seq is an accessible and cost-effective method for high-throughput deep single cell profiling, applicable to a wide range of biological challenges.
biorxiv genomics 100-200-users 2018Trans effects on gene expression can drive omnigenic inheritance, bioRxiv, 2018-09-25
Early genome-wide association studies (GWAS) led to the surprising discovery that, for typical complex traits, the most significant genetic variants contribute only a small fraction of the estimated heritability. Instead, it has become clear that a huge number of common variants, each with tiny effects, explain most of the heritability. Previously, we argued that these patterns conflict with standard conceptual models, and that new models are needed. Here we provide a formal model in which genetic contributions to complex traits can be partitioned into direct effects from core genes, and indirect effects from peripheral genes acting as trans-regulators. We argue that the central importance of peripheral genes is a direct consequence of the large contribution of trans-acting variation to gene expression variation. In particular, we propose that if the core genes for a trait are co-regulated – as seems likely – then the effects of peripheral variation can be amplified by these co-regulated networks such that nearly all of the genetic variance is driven by peripheral genes. Thus our model proposes a framework for understanding key features of the architecture of complex traits.
biorxiv genetics 200-500-users 2018A transposable element insertion is the switch between alternative life history strategies, bioRxiv, 2018-09-24
Tradeoffs affect resource allocation during development and result in fitness consequences that drive the evolution of life history strategies. Yet despite their importance, we know little about the mechanisms underlying life history tradeoffs in wild populations. Many species of Colias butterflies exhibit an alternative life history strategy (ALHS) where females divert resources from wing pigment synthesis to reproductive and somatic development. Due to this reallocation, a wing color polymorphism is associated with the ALHS individuals have either yelloworange or white wings. Here we map the genetic basis of the ALHS switch in Colias crocea to a transposable element insertion downstream of the Colias homolog of BarH-1, a homeobox transcription factor. Using CRISPRCas9 gene editing, antibody staining, and electron microscopy we find morph-specific specific expression of BarH-1 suppresses the formation of pigment granules in wing scales. Lipid and transcriptome analyses reveal physiological differences associated with the ALHS. These findings characterize a novel mechanism for a female-limited ALHS and show that the switch arises via recruitment of a transcription factor previously known for its function in cell fate determination in pigment cells of the retina.
biorxiv genomics 100-200-users 2018Layer-dependent activity in human prefrontal cortex during working memory, bioRxiv, 2018-09-24
Working memory involves a series of functions encoding a stimulus, maintaining or manipulating its representation over a delay, and finally making a behavioral response. While working memory engages dorsolateral prefrontal cortex (dlPFC), few studies have investigated whether these subfunctions are localized to different cortical depths in this region, and none have done so in humans. Here, we use high-resolution functional MRI to interrogate the layer specificity of neural activity during different epochs of a working memory task in dlPFC. We detect activity timecourses that follow the hypothesized patterns superficial layers are preferentially active during the delay period, while deeper layers are preferentially active during the response. Results demonstrate that layer-specific fMRI can be used in higher-order brain regions to non-invasively map cognitive information processing along cortical circuitry in humans.
biorxiv neuroscience 0-100-users 2018MITO-Tag Mice enable rapid isolation and multimodal profiling of mitochondria from specific cell types in vivo, bioRxiv, 2018-09-24
ABSTRACTMitochondria are metabolic organelles that are essential for mammalian life, but the dynamics of mitochondrial metabolism within mammalian tissues in vivo remains incompletely understood. While whole-tissue metabolite profiling has been useful for studying metabolism in vivo, such an approach lacks resolution at the cellular and subcellular level. In vivo methods for interrogating organellar metabolites in specific cell-types within mammalian tissues have been limited. To address this, we built on prior work in which we exploited a mitochondrially-localized 3XHA epitope-tag (“MITO-Tag”) for the fast isolation of mitochondria from cultured cells to now generate “MITO-Tag Mice.” Affording spatiotemporal control over MITO-Tag expression, these transgenic animals enable the rapid, cell-type-specific immunoisolation of mitochondria from tissues, which we verified using a combination of proteomic and metabolomic approaches. Using MITO-Tag Mice and targeted and untargeted metabolite profiling, we identified changes during fasted and refed conditions in a diverse array of mitochondrial metabolites in hepatocytes and found metabolites that behaved differently at the mitochondrial versus whole-tissue level. MITO-Tag Mice should have utility for studying mitochondrial physiology and our strategy should be generally applicable for studying other mammalian organelles in specific cell-types in vivo.
biorxiv molecular-biology 100-200-users 2018