Expanding Parkinson’s disease genetics novel risk loci, genomic context, causal insights and heritable risk, bioRxiv, 2018-08-09
AbstractWe performed the largest genome-wide association study of PD to date, involving the analysis of 7.8M SNPs in 37.7K cases, 18.6K UK Biobank proxy-cases, and 1.4M controls. We identified 90 independent genome-wide significant signals across 78 loci, including 38 independent risk signals in 37 novel loci. These variants explained 26-36% of the heritable risk of PD. Tests of causality within a Mendelian randomization framework identified putatively causal genes for 70 risk signals. Tissue expression enrichment analysis suggested that signatures of PD loci were heavily brain-enriched, consistent with specific neuronal cell types being implicated from single cell expression data. We found significant genetic correlations with brain volumes, smoking status, and educational attainment. In sum, these data provide the most comprehensive understanding of the genetic architecture of PD to date by revealing many additional PD risk loci, providing a biological context for these risk factors, and demonstrating that a considerable genetic component of this disease remains unidentified.
biorxiv genetics 0-100-users 2018Rapid Diagnosis of Lower Respiratory Infection using Nanopore-based Clinical Metagenomics, bioRxiv, 2018-08-09
AbstractLower respiratory infections (LRIs) accounted for three million deaths worldwide in 2016, the leading infectious cause of mortality. The “gold standard” for investigation of bacterial LRIs is culture, which has poor sensitivity and is too slow to guide early antibiotic therapy. Metagenomic sequencing potentially could replace culture, providing rapid, sensitive and comprehensive results. We developed a metagenomics pipeline for the investigation of bacterial LRIs using saponin-based host DNA depletion combined with rapid nanopore sequencing. The first iteration of the pipeline was tested on respiratory samples from 40 patients. It was then refined to reduce turnaround and increase sensitivity, before testing a further 41 samples. The refined method was 96.6% concordant with culture for detection of pathogens and could accurately detect resistance genes with a turnaround time of six hours. This study demonstrates that nanopore metagenomics can rapidly and accurately characterise bacterial LRIs when combined with efficient human DNA depletion.
biorxiv microbiology 100-200-users 2018Exploring the effect of microdosing psychedelics on creativity in an open-label natural setting, bioRxiv, 2018-08-08
AbstractIntroductionRecently popular sub-perceptual doses of psychedelic substances such as truffles, referred to as microdosing, allegedly have multiple beneficial effects including creativity and problem solving performance, potentially through targeting serotonergic 5-HT2A receptors and promoting cognitive flexibility, crucial to creative thinking. Nevertheless, enhancing effects of microdosing remain anecdotal, and in the absence of quantitative research on microdosing psychedelics it is impossible to draw definitive conclusions on that matter. Here, our main aim was to quantitatively explore the cognitive-enhancing potential of microdosing psychedelics in healthy adults.MethodsDuring a microdosing event organized by the Dutch Psychedelic Society, we examined the effects of psychedelic truffles (which were later analyzed to quantify active psychedelic alkaloids) on two creativity-related problem-solving tasks the Picture Concept Task assessing convergent thinking, and the Alternative Uses Task assessing divergent thinking. A short version of the Ravens Progressive Matrices task assessed potential changes in fluid intelligence. We tested once before taking a microdose and once while the effects were manifested.ResultsWe found that both convergent and divergent thinking performance was improved after a non-blinded microdose, whereas fluid intelligence was unaffected.ConclusionWhile this study provides quantitative support for the cognitive enhancing properties of microdosing psychedelics, future research has to confirm these preliminary findings in more rigorous placebo-controlled study designs. Based on these preliminary results we speculate that psychedelics might affect cognitive metacontrol policies by optimizing the balance between cognitive persistence and flexibility. We hope this study will motivate future microdosing studies with more controlled designs to test this hypothesis.
biorxiv neuroscience 0-100-users 2018MULTI-seq Scalable sample multiplexing for single-cell RNA sequencing using lipid-tagged indices, bioRxiv, 2018-08-08
ABSTRACTWe describe MULTI-seq A rapid, modular, and universal scRNA-seq sample multiplexing strategy using lipid-tagged indices. MULTI-seq reagents can barcode any cell type from any species with an accessible plasma membrane. The method is compatible with enzymatic tissue dissociation, and also preserves viability and endogenous gene expression patterns. We leverage these features to multiplex the analysis of multiple solid tissues comprising human and mouse cells isolated from patient-derived xenograft mouse models. We also utilize MULTI-seq’s modular design to perform a 96-plex perturbation experiment with human mammary epithelial cells. MULTI-seq also enables robust doublet identification, which improves data quality and increases scRNA-seq cell throughput by minimizing the negative effects of Poisson loading. We anticipate that the sample throughput and reagent savings enabled by MULTI-seq will expand the purview of scRNA-seq and democratize the application of these technologies within the scientific community.
biorxiv genomics 100-200-users 2018Conserved cell types with divergent features between human and mouse cortex, bioRxiv, 2018-08-06
AbstractElucidating the cellular architecture of the human neocortex is central to understanding our cognitive abilities and susceptibility to disease. Here we applied single nucleus RNA-sequencing to perform a comprehensive analysis of cell types in the middle temporal gyrus of human cerebral cortex. We identify a highly diverse set of excitatory and inhibitory neuronal types that are mostly sparse, with excitatory types being less layer-restricted than expected. Comparison to a similar mouse cortex single cell RNA-sequencing dataset revealed a surprisingly well-conserved cellular architecture that enables matching of homologous types and predictions of human cell type properties. Despite this general conservation, we also find extensive differences between homologous human and mouse cell types, including dramatic alterations in proportions, laminar distributions, gene expression, and morphology. These species-specific features emphasize the importance of directly studying human brain.
biorxiv neuroscience 0-100-users 2018