Gephebase, a Database of Genotype-Phenotype Relationships for natural and domesticated variation in Eukaryotes, bioRxiv, 2019-04-25

AbstractGephebase is a manually-curated database compiling our accumulated knowledge of the genes and mutations that underlie natural, domesticated and experimental phenotypic variation in all Eukaryotes — mostly animals, plants and yeasts. Gephebase aims to compile studies where the genotype-phenotype association (based on linkage mapping, association mapping or a candidate gene approach) is relatively well supported or understood. Human disease and aberrant mutant phenotypes in laboratory model organisms are not included in Gephebase and can be found in other databases (eg. OMIM, OMIA, Monarch Initiative). Gephebase contains more than 1700 entries. Each entry corresponds to an allelic difference at a given gene and its associated phenotypic change(s) between two species or between two individuals of the same species, and is enriched with molecular details, taxonomic information, and bibliographic information. Users can easily browse entries for their topic of interest and perform searches at various levels, whether phenotypic, genetic, taxonomic or bibliographic (eg. transposable elements, cis-regulatory mutations, snakes, carotenoid content, an author name). Data can be searched using keywords and boolean operators and is exportable in spreadsheet format. This database allows to perform meta-analysis to extract general information and global trends about evolution, genetics, and the field of evolutionary genetics itself. Gephebase should also help breeders, conservationists and others to identify the most promising target genes for traits of interest, with potential applications such as crop improvement, parasite and pest control, bioconservation, and genetic diagnostic. It is freely available at <jatsext-link xmlnsxlink=httpwww.w3.org1999xlink ext-link-type=uri xlinkhref=httpwww.gephebase.org>www.gephebase.org<jatsext-link>.

biorxiv bioinformatics 0-100-users 2019

Neighbor predation linked to natural competence fosters the transfer of large genomic regions in Vibrio cholerae, bioRxiv, 2019-04-25

AbstractNatural competence for transformation is a primary mode of horizontal gene transfer (HGT). Competent bacteria are able to absorb free DNA from their surroundings and exchange this DNA against pieces of their own genome when sufficiently homologous. And while it is known that transformation contributes to evolution and pathogen emergence in bacteria, there are still questions regarding the general prevalence of non-degraded DNA with sufficient coding capacity. In this context, we previously showed that the naturally competent bacterium Vibrio cholerae uses its type VI secretion system (T6SS) to actively acquire DNA from non-kin neighbors under chitin-colonizing conditions. We therefore sought to further explore the role of the T6SS in acquiring DNA, the condition of the DNA released through T6SS-mediated killing versus passive cell lysis, and the extent of the transfers that occur due to these conditions. To do this, we herein measured the frequency and the extent of genetic exchanges in bacterial co-cultures on competence-inducing chitin under various DNA-acquisition conditions. We show that competent V. cholerae strains acquire DNA fragments with an average and maximum length exceeding 50 kbp and 150 kbp, respectively, and that the T6SS is of prime importance for such HGT events. Collectively, our data support the notion that the environmental lifestyle of V. cholerae fosters HGT and that the coding capacity of the exchanged genetic material is sufficient to significantly accelerate bacterial evolution.Significance StatementDNA shuffled from one organism to another in an inheritable manner is a common feature of prokaryotes. It is a significant mechanism by which bacteria acquire new phenotypes, for example by first absorbing foreign DNA and then recombining it into their genome. In this study, we show the remarkable extent of the exchanged genetic material, frequently exceeding 150 genes in a seemingly single transfer event, in Vibrio cholerae. We also show that to best preserve its length and quality, bacteria mainly acquire this DNA by killing adjacent, healthy neighbors then immediately absorbing the released DNA before it can be degraded. These new insights into this prey-killing DNA acquisition process shed light on how bacterial species evolve in the wild.

biorxiv microbiology 0-100-users 2019

RNA transcribed from heterochromatic simple-tandem repeats are required for male fertility and histone-protamine exchange in Drosophila melanogaster, bioRxiv, 2019-04-25

AbstractLong arrays of simple, tandemly repeated DNA sequences (known as satellites) are enriched in centromeres1 and pericentromeric regions2, and contribute to chromosome segregation and other heterochromatin functions3,4. Surprisingly, satellite DNAs are expressed in many multicellular eukaryotes, and their aberrant transcription may contribute to carcinogenesis and cellular toxicity5-7. Satellite transcription andor RNAs may also promote centromere and heterochromatin activities 8-12. However, we lack direct evidence that satellite DNA transcripts are required for normal cell or organismal functions. Here, we show that satellite RNAs derived from AAGAG tandem repeats are transcribed in many cell types throughout Drosophila melanogaster development, enriched in neuronal tissues and testes, localized within heterochromatic regions, and important for viability. Strikingly, we find that AAGAG transcripts are necessary for male fertility and are specifically required for normal histone-protamine exchange and sperm chromatin organization. Since AAGAG RNA-dependent events happen late in spermatogenesis when the transcripts are not detected, we speculate that AAGAG RNA functions in primary spermatocytes to ‘prime’ post-meiosis steps in sperm maturation. In addition to demonstrating specific essential functions for AAGAG RNAs, comparisons between closely related Drosophila species suggest that satellite repeats and their transcription evolve quickly to generate new functions.

biorxiv cell-biology 100-200-users 2019

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo