Xmas ESC A new female embryonic stem cell system that reveals the BAF complex as a key regulator of the establishment of X chromosome inactivation, bioRxiv, 2019-09-14
SummaryAlthough female pluripotency significantly differs to male, complications with in vitro culture of female embryonic stem cells (ESC) have severely limited the use and study of these cells. We report a replenishable female ESC system, Xmas, that has enabled us to optimise a protocol for preserving the XX karyotype. Our protocol also improves male ESC fitness. We utilised our Xmas ESC system to screen for regulators of the female-specific process of X chromosome inactivation, revealing chromatin remodellers Smarcc1 and Smarca4 as key regulators of establishment of X inactivation. The remodellers create a nucleosome depleted region at gene promotors on the inactive X during exit from pluripotency, without which gene silencing fails. Our female ESC system provides a tractable model for XX ESC culture that will expedite study of female pluripotency and has enabled us to discover new features of the female-specific process of X inactivation.
biorxiv cell-biology 0-100-users 2019Galactose-modified duocarmycin prodrugs as senolytics, bioRxiv, 2019-08-25
SUMMARYSenescence is a stable growth arrest that impairs the replication of damaged, old or preneoplastic cells, therefore contributing to tissue homeostasis. Senescent cells accumulate during ageing and are associated with diseases, such as cancer, fibrosis and many age-related pathologies. Recent evidence suggests that the selective elimination of senescent cells can be effective on the treatment of many of these senescence-associated diseases. A universal characteristic of senescent cells is that they display elevated activity of the lysosomal β-galactosidase this has been exploited as a marker for senescence (senescence-associated β-galactosidase activity). Consequently, we hypothesised that galactose-modified cytotoxic prodrugs will be preferentially processed by senescent cells, resulting in their selective killing. Here, we show that different galactose-modified duocarmycin (GMD) derivatives preferentially kill senescent cells. GMD prodrugs induce selective apoptosis of senescent cells in a lysosomal β-galactosidase (GLB1)-dependent manner. GMD prodrugs can eliminate a broad range of senescent cells in culture, and treatment with a GMD prodrug enhances the elimination of bystander senescent cells that accumulate upon whole body irradiation or doxorubicin treatment of mice. Moreover, taking advantage of a mouse model of human adamantinomatous craniopharyngioma (ACP), we show that treatment with a GMD pro-drug result selectively reduced the number of β-catenin-positive preneoplastic senescent cells, what could have therapeutic implications. In summary, the above results show that galactose-modified duocarmycin prodrugs behave as senolytics, suggesting that they could be used to treat a wide range of senescence-related pathologies.
biorxiv cell-biology 0-100-users 2019Small molecules for modulating protein driven liquid-liquid phase separation in treating neurodegenerative disease, bioRxiv, 2019-08-06
AbstractAmyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with few avenues for treatment. Many proteins implicated in ALS associate with stress granules, which are examples of liquid-like compartments formed by phase separation. Aberrant phase transition of stress granules has been implicated in disease, suggesting that modulation of phase transitions could be a possible therapeutic route. Here, we combine cell-based and protein-based screens to show that lipoamide, and its related compound lipoic acid, reduce the propensity of stress granule proteins to aggregate in vitro. More significantly, they also prevented aggregation of proteins over the life time of Caenorhabditis elegans. Observations that they prevent dieback of ALS patient-derived (FUS mutant) motor neuron axons in culture and recover motor defects in Drosophila melanogaster expressing FUS mutants suggest plausibility as effective therapeutics. Our results suggest that altering phase behaviour of stress granule proteins in the cytoplasm could be a novel route to treat ALS.
biorxiv cell-biology 100-200-users 2019The histone chaperone FACT induces Cas9 multi-turnover behavior and modifies genome manipulation in human cells, bioRxiv, 2019-07-24
SummaryCas9 is a prokaryotic RNA-guided DNA endonuclease that binds substrates tightly in vitro but turns over rapidly when used to manipulate genomes in eukaryotic cells. Little is known about the factors responsible for dislodging Cas9 or how they influence genome engineering. Using a proximity labeling system for unbiased detection of transient protein interactions in cell-free Xenopus laevis egg extract, we identified the dimeric histone chaperone FACT as an interactor of substrate-bound Cas9. Immunodepletion of FACT subunits from extract potently inhibits Cas9 unloading and converts Cas9’s activity from multi-turnover to single-turnover. In human cells, depletion of FACT delays genome editing and alters the balance between indel formation and homology directed repair. Depletion of FACT also increases epigenetic marking by dCas9-based transcriptional effectors with concomitant enhancement of transcriptional modulation. FACT thus shapes the intrinsic cellular response to Cas9-based genome manipulation most likely by determining Cas9 residence times.
biorxiv cell-biology 0-100-users 2019CD44 regulates epigenetic plasticity by mediating iron endocytosis, bioRxiv, 2019-07-09
SUMMARYCD44 is a transmembrane glycoprotein that is linked to various biological processes reliant on the epigenetic plasticity of cells, including development, inflammation, immune responses, wound healing and cancer progression. While thoroughly studied, functional regulatory roles of this so-called ‘cell surface marker’ remain elusive. Here, we report the discovery that CD44 mediates endocytosis of iron interacting with hyaluronates in tumorigenic cell lines and primary cancer cells. We found that this glycan-mediated iron endocytosis mechanism is enhanced during epithelial-mesenchymal transition, unlike the canonical transferrin-dependent pathway. This transition is further characterized by molecular changes required for iron-catalyzed oxidative demethylation of the repressive histone mark H3K9me2 that governs the expression of mesenchymal genes. CD44 itself is transcriptionally regulated by nuclear iron, demonstrating a positive feedback loop, which is in contrast to the negative regulation of transferrin receptor by excess iron. Finally, we show that epigenetic plasticity can be altered by interfering with iron homeostasis using small molecules. This comprehensive study reveals an alternative iron uptake mechanism that prevails in the mesenchymal state of mammalian cells, illuminating a central role of iron as a rate-limiting regulator of epigenetic plasticity.
biorxiv cell-biology 0-100-users 2019A live-cell screen for altered Erk dynamics reveals principles of proliferative control, bioRxiv, 2019-06-20
Complex, time-varying responses have been observed widely in cell signaling, but how specific dynamics are generated or regulated is largely unknown. One major obstacle has been that high-throughput screens for identifying pathway components are typically incompatible with the live-cell assays used to monitor dynamics. Here, we address this challenge by performing a drug screen for altered Erk signaling dynamics in primary mouse keratinocytes. We screened a library of 429 kinase inhibitors, monitoring Erk activity over 5 h in more than 80,000 single live cells. The screen revealed both known and uncharacterized modulators of Erk dynamics, including inhibitors of non-EGFR receptor tyrosine kinases (RTKs) that increased Erk pulse frequency and overall activity. Using drug treatment and direct optogenetic control, we demonstrate that drug-induced changes to Erk dynamics alter the conditions under which cells proliferate. Our work opens the door to high-throughput screens using live-cell biosensors and reveals that cell proliferation integrates information from Erk dynamics as well as additional permissive cues.
biorxiv cell-biology 0-100-users 2019