Minimal phenotyping yields GWAS hits of low specificity for major depression, bioRxiv, 2018-10-11

AbstractMinimal phenotyping refers to the reliance on self-reported responses to one or two questions for disease case identification. This strategy has been applied to genome-wide association studies (GWAS) of major depressive disorder (MDD). Here we report that the genotype derived heritability (h2SNP) of depression defined by minimal phenotyping (14%, SE = 0.8%) is lower than strictly defined MDD (26%, SE = 2.2%), and that it shares as much genetic liability with strictly defined MDD (0.81, SE = 0.03) as it does with neuroticism (0.84, SE = 0.05), a trait not defined by the cardinal symptoms of depression. While they both show similar shared genetic liability with the personality trait neuroticism, a greater proportion of the genome contribute to the minimal phenotyping definitions of depression (80.2%, SE = 0.6%) than to strictly defined MDD (65.8%, SE = 0.6%). We find that GWAS loci identified in minimal phenotyping definitions of depression are not specific to MDD they also predispose to other psychiatric conditions. Finally, genetic predictors based on minimal phenotyping definitions are not predictive of strictly defined MDD in independent cohorts. Our results reveal that genetic analysis of minimal phenotyping definitions of depression identifies non-specific genetic factors shared between MDD and other psychiatric conditions. Reliance on results from minimal phenotyping for MDD may thus bias views of the genetic architecture of MDD and impedes ability to identify pathways specific to MDD.

biorxiv genetics 100-200-users 2018

Minimal phenotyping yields GWAS hits of reduced specificity for major depression, bioRxiv, 2018-10-11

AbstractMinimal phenotyping refers to the reliance on the use of a small number of self-report items for disease case identification. This strategy has been applied to genome-wide association studies (GWAS) of major depressive disorder (MDD). Here we report that the genotype derived heritability (h2SNP) of depression defined by minimal phenotyping (14%, SE = 0.8%) is lower than strictly defined MDD (26%, SE = 2.2%). This cannot be explained by differences in prevalence between definitions or including cases of lower liability to MDD in minimal phenotyping definitions of depression, but can be explained by misdiagnosis of those without depression or with related conditions as cases of depression. Depression defined by minimal phenotyping is as genetically correlated with strictly defined MDD (rG = 0.81, SE = 0.03) as it is with the personality trait neuroticism (rG = 0.84, SE = 0.05), a trait not defined by the cardinal symptoms of depression. While they both show similar shared genetic liability with neuroticism, a greater proportion of the genome contributes to the minimal phenotyping definitions of depression (80.2%, SE = 0.6%) than to strictly defined MDD (65.8%, SE = 0.6%). We find that GWAS loci identified in minimal phenotyping definitions of depression are not specific to MDD they also predispose to other psychiatric conditions. Finally, while highly predictive polygenic risk scores can be generated from minimal phenotyping definitions of MDD, the predictive power can be explained entirely by the sample size used to generate the polygenic risk score, rather than specificity for MDD. Our results reveal that genetic analysis of minimal phenotyping definitions of depression identifies non-specific genetic factors shared between MDD and other psychiatric conditions. Reliance on results from minimal phenotyping for MDD may thus bias views of the genetic architecture of MDD and may impede our ability to identify pathways specific to MDD.

biorxiv genetics 100-200-users 2018

Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Supplementary Information, bioRxiv, 2018-10-09

Major depression is a debilitating psychiatric illness that is typically associated with low mood, anhedonia and a range of comorbidities. Depression has a heritable component that has remained difficult to elucidate with current sample sizes due to the polygenic nature of the disorder. To maximise sample size, we meta-analysed data on 807,553 individuals (246,363 cases and 561,190 controls) from the three largest genome-wide association studies of depression. We identified 102 independent variants, 269 genes, and 15 gene-sets associated with depression, including both genes and gene-pathways associated with synaptic structure and neurotransmission. Further evidence of the importance of prefrontal brain regions in depression was provided by an enrichment analysis. In an independent replication sample of 1,306,354 individuals (414,055 cases and 892,299 controls), 87 of the 102 associated variants were significant following multiple testing correction. Based on the putative genes associated with depression this work also highlights several potential drug repositioning opportunities. These findings advance our understanding of the complex genetic architecture of depression and provide several future avenues for understanding aetiology and developing new treatment approaches.

biorxiv genetics 200-500-users 2018

A high-resolution map of non-crossover events reveals impacts of genetic diversity on mammalian meiotic recombination, bioRxiv, 2018-09-27

During meiotic recombination in most mammals, hundreds of programmed DNA Double-Strand Breaks (DSBs) occur across all chromosomes in each cell at sites bound by the protein PRDM9. Faithful DSB repair using the homologous chromosome is essential for fertility, yielding either non-crossovers, which are frequent but difficult to detect, or crossovers. In certain hybrid mice, high sequence divergence causes PRDM9 to bind each homologue at different sites, 'asymmetrically', and these mice exhibit meiotic failure and infertility, by unknown mechanisms. To investigate the impact of local sequence divergence on recombination, we intercrossed two mouse subspecies over five generations and deep-sequenced 119 offspring, whose high heterozygosity allowed detection of thousands of crossover and non-crossover events with unprecedented power and spatial resolution. Both crossovers and non-crossovers are strongly depleted at individual asymmetric sites, revealing that PRDM9 not only positions DSBs but also promotes their homologous repair by binding to the unbroken homologue at each site. Unexpectedly, we found that non-crossovers containing multiple mismatches repair by a different mechanism than single-mismatch sites, which undergo GC-biased gene conversion. These results demonstrate that local genetic diversity profoundly alters meiotic repair pathway decisions via at least two distinct mechanisms, impacting genome evolution and Prdm9-related hybrid infertility.

biorxiv genetics 0-100-users 2018

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo