Genetic meta-analysis identifies 9 novel loci and functional pathways for Alzheimer’s disease risk, bioRxiv, 2018-02-21
AbstractLate onset Alzheimer’s disease (AD) is the most common form of dementia with more than 35 million people affected worldwide, and no curative treatment available. AD is highly heritable and recent genome-wide meta-analyses have identified over 20 genomic loci associated with AD, yet only explaining a small proportion of the genetic variance indicating that undiscovered loci exist. Here, we performed the largest genome-wide association study of clinically diagnosed AD and AD-by-proxy (71,880 AD cases, 383,378 controls). AD-by-proxy status is based on parental AD diagnosis, and showed strong genetic correlation with AD (rg=0.81). Genetic meta analysis identified 29 risk loci, of which 9 are novel, and implicating 215 potential causative genes. Independent replication further supports these novel loci in AD. Associated genes are strongly expressed in immune-related tissues and cell types (spleen, liver and microglia). Furthermore, gene-set analyses indicate the genetic contribution of biological mechanisms involved in lipid-related processes and degradation of amyloid precursor proteins. We show strong genetic correlations with multiple health-related outcomes, and Mendelian randomisation results suggest a protective effect of cognitive ability on AD risk. These results are a step forward in identifying more of the genetic factors that contribute to AD risk and add novel insights into the neurobiology of AD to guide new drug development.
biorxiv genetics 100-200-users 2018Understanding 6th-Century Barbarian Social Organization and Migration through Paleogenomics, bioRxiv, 2018-02-21
ABSTARCTDespite centuries of research, much about the barbarian migrations that took place between the fourth and sixth centuries in Europe remains hotly debated. To better understand this key era that marks the dawn of modern European societies, we obtained ancient genomic DNA from 63 samples from two cemeteries (from Hungary and Northern Italy) that have been previously associated with the Longobards, a barbarian people that ruled large parts of Italy for over 200 years after invading from Pannonia in 568 CE. Our dense cemetery-based sampling revealed that each cemetery was primarily organized around one large pedigree, suggesting that biological relationships played an important role in these early Medieval societies. Moreover, we identified genetic structure in each cemetery involving at least two groups with different ancestry that were very distinct in terms of their funerary customs. Finally, our data was consistent with the proposed long-distance migration from Pannonia to Northern Italy.
biorxiv genetics 100-200-users 2018Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences1, bioRxiv, 2018-02-12
AbstractHumans vary substantially in their willingness to take risks. In a combined sample of over one million individuals, we conducted genome-wide association studies (GWAS) of general risk tolerance, adventurousness, and risky behaviors in the driving, drinking, smoking, and sexual domains. We identified 611 approximately independent genetic loci associated with at least one of our phenotypes, including 124 with general risk tolerance. We report evidence of substantial shared genetic influences across general risk tolerance and risky behaviors 72 of the 124 general risk tolerance loci contain a lead SNP for at least one of our other GWAS, and general risk tolerance is moderately to strongly genetically correlated (<jatsinline-formula><jatsinline-graphic xmlnsxlink=httpwww.w3.org1999xlink xlinkhref=261081_inline1.gif ><jatsinline-formula> to 0.50) with a range of risky behaviors. Bioinformatics analyses imply that genes near general-risk-tolerance-associated SNPs are highly expressed in brain tissues and point to a role for glutamatergic and GABAergic neurotransmission. We find no evidence of enrichment for genes previously hypothesized to relate to risk tolerance.
biorxiv genetics 200-500-users 2018Impact of genetically engineered maize on agronomic, environmental and toxicological traits a meta-analysis of 21 years of field data, Scientific Reports, 2018-02-09
Despite the extensive cultivation of genetically engineered (GE) maize and considerable number of scientific reports on its agro-environmental impact, the risks and benefits of GE maize are still being debated and concerns about safety remain. This meta-analysis aimed at increasing knowledge on agronomic, environmental and toxicological traits of GE maize by analyzing the peer-reviewed literature (from 1996 to 2016) on yield, grain quality, non-target organisms (NTOs), target organisms (TOs) and soil biomass decomposition. Results provided strong evidence that GE maize performed better than its near isogenic line grain yield was 5.6 to 24.5% higher with lower concentrations of mycotoxins (−28.8%), fumonisin (−30.6%) and thricotecens (−36.5%). The NTOs analyzed were not affected by GE maize, except for Braconidae, represented by a parasitoid of European corn borer, the target of Lepidoptera active Bt maize. Biogeochemical cycle parameters such as lignin content in stalks and leaves did not vary, whereas biomass decomposition was higher in GE maize. The results support the cultivation of GE maize, mainly due to enhanced grain quality and reduction of human exposure to mycotoxins. Furthermore, the reduction of the parasitoid of the target and the lack of consistent effects on other NTOs are confirmed.
scientific reports genetics 500+-users 2018Genome-wide Analysis of Insomnia (N=1,331,010) Identifies Novel Loci and Functional Pathways, bioRxiv, 2018-01-31
AbstractInsomnia is the second-most prevalent mental disorder, with no sufficient treatment available. Despite a substantial role of genetic factors, only a handful of genes have been implicated and insight into the associated neurobiological pathways remains limited. Here, we use an unprecedented large genetic association sample (N=1,331,010) to allow detection of a substantial number of genetic variants and gain insight into biological functions, cell types and tissues involved in insomnia complaints. We identify 202 genome-wide significant loci implicating 956 genes through positional, eQTL and chromatin interaction mapping. We show involvement of the axonal part of neurons, of specific cortical and subcortical tissues, and of two specific cell-types in insomnia striatal medium spiny neurons and hypothalamic neurons. These cell-types have been implicated previously in the regulation of reward processing, sleep and arousal in animal studies, but have never been genetically linked to insomnia in humans. We found weak genetic correlations with other sleep-related traits, but strong genetic correlations with psychiatric and metabolic traits. Mendelian randomization identified causal effects of insomnia on specific psychiatric and metabolic traits. Our findings reveal key brain areas and cells implicated in the neurobiology of insomnia and its related disorders, and provide novel targets for treatment.
biorxiv genetics 100-200-users 2018Human Skeletal Muscle Possesses an Epigenetic Memory of Hypertrophy, Scientific Reports, 2018-01-24
It is unknown if adult human skeletal muscle has an epigenetic memory of earlier encounters with growth. We report, for the first time in humans, genome-wide DNA methylation (850,000 CpGs) and gene expression analysis after muscle hypertrophy (loading), return of muscle mass to baseline (unloading), followed by later hypertrophy (reloading). We discovered increased frequency of hypomethylation across the genome after reloading (18,816 CpGs) versus earlier loading (9,153 CpG sites). We also identified AXIN1, GRIK2, CAMK4, TRAF1 as hypomethylated genes with enhanced expression after loading that maintained their hypomethylated status even during unloading where muscle mass returned to control levels, indicating a memory of these genes methylation signatures following earlier hypertrophy. Further, UBR5, RPL35a, HEG1, PLA2G16, SETD3 displayed hypomethylation and enhanced gene expression following loading, and demonstrated the largest increases in hypomethylation, gene expression and muscle mass after later reloading, indicating an epigenetic memory in these genes. Finally, genes; GRIK2, TRAF1, BICC1, STAG1 were epigenetically sensitive to acute exercise demonstrating hypomethylation after a single bout of resistance exercise that was maintained 22 weeks later with the largest increase in gene expression and muscle mass after reloading. Overall, we identify an important epigenetic role for a number of largely unstudied genes in muscle hypertrophymemory.
scientific reports genetics 500+-users 2018