Environmental factors dominate over host genetics in shaping human gut microbiota composition, bioRxiv, 2017-06-17
AbstractHuman gut microbiome composition is shaped by multiple host intrinsic and extrinsic factors, but the relative contribution of host genetic compared to environmental factors remains elusive. Here, we genotyped a cohort of 696 healthy individuals from several distinct ancestral origins and a relatively common environment, and demonstrate that there is no statistically significant association between microbiome composition and ethnicity, single nucleotide polymorphisms (SNPs), or overall genetic similarity, and that only 5 of 211 (2.4%) previously reported microbiome-SNP associations replicate in our cohort. In contrast, we find similarities in the microbiome composition of genetically unrelated individuals who share a household. We define the term biome-explainability as the variance of a host phenotype explained by the microbiome after accounting for the contribution of human genetics. Consistent with our finding that microbiome and host genetics are largely independent, we find significant biome-explainability levels of 16-33% for body mass index (BMI), fasting glucose, high-density lipoprotein (HDL) cholesterol, waist circumference, waist-hip ratio (WHR), and lactose consumption. We further show that several human phenotypes can be predicted substantially more accurately when adding microbiome data to host genetics data, and that the contribution of both data sources to prediction accuracy is largely additive. Overall, our results suggest that human microbiome composition is dominated by environmental factors rather than by host genetics.
biorxiv genetics 200-500-users 2017Quantifying the impact of rare and ultra-rare coding variation across the phenotypic spectrum, bioRxiv, 2017-06-10
AbstractThere is a limited understanding about the impact of rare protein truncating variants across multiple phenotypes. We explore the impact of this class of variants on 13 quantitative traits and 10 diseases using whole-exome sequencing data from 100,296 individuals. Protein truncating variants in genes intolerant to this class of mutations increased risk of autism, schizophrenia, bipolar disorder, intellectual disability, ADHD. In individuals without these disorders, there was an association with shorter height, lower education, increased hospitalization and reduced age. Gene sets implicated from GWAS did not show a significant protein truncating variants-burden beyond what captured by established Mendelian genes. In conclusion, we provide the most thorough investigation to date of the impact of rare deleterious coding variants on complex traits, suggesting widespread pleiotropic risk.Main abbreviations<jatsdef-list><jatsdef-item>PTV= Protein Truncating Variants<jatsdef-item><jatsdef-item>PI= Protein Truncating Intolerant<jatsdef-item><jatsdef-item>PI-PTV= Protein Truncating Variant in genes that are Intolerant to Protein Truncating Variants<jatsdef-item><jatsdef-list>
biorxiv genetics 100-200-users 2017Discovery of the first genome-wide significant risk loci for ADHD, bioRxiv, 2017-06-04
AbstractAttention-DeficitHyperactivity Disorder (ADHD) is a highly heritable childhood behavioral disorder affecting 5% of school-age children and 2.5% of adults. Common genetic variants contribute substantially to ADHD susceptibility, but no individual variants have been robustly associated with ADHD. We report a genome-wide association meta-analysis of 20,183 ADHD cases and 35,191 controls that identifies variants surpassing genome-wide significance in 12 independent loci, revealing new and important information on the underlying biology of ADHD. Associations are enriched in evolutionarily constrained genomic regions and loss-of-function intolerant genes, as well as around brain-expressed regulatory marks. These findings, based on clinical interviews andor medical records are supported by additional analyses of a self-reported ADHD sample and a study of quantitative measures of ADHD symptoms in the population. Meta-analyzing these data with our primary scan yielded a total of 16 genome-wide significant loci. The results support the hypothesis that clinical diagnosis of ADHD is an extreme expression of one or more continuous heritable traits.
biorxiv genetics 200-500-users 2017Continuity and admixture in the last five millennia of Levantine history from ancient Canaanite and present-day Lebanese genome sequences, bioRxiv, 2017-05-27
The Canaanites inhabited the Levant region during the Bronze Age and established a culture which became influential in the Near East and beyond. However, the Canaanites, unlike most other ancient Near Easterners of this period, left few surviving textual records and thus their origin and relationship to ancient and present-day populations remain unclear. In this study, we sequenced five whole-genomes from ~3,700-year-old individuals from the city of Sidon, a major Canaanite city-state on the Eastern Mediterranean coast. We also sequenced the genomes of 99 individuals from present-day Lebanon to catalogue modern Levantine genetic diversity. We find that a Bronze Age Canaanite-related ancestry was widespread in the region, shared among urban populations inhabiting the coast (Sidon) and inland populations (Jordan) who likely lived in farming societies or were pastoral nomads. This Canaanite-related ancestry derived from mixture between local Neolithic populations and eastern migrants genetically related to Chalcolithic Iranians. We estimate, using linkage-disequilibrium decay patterns, that admixture occurred 6,600-3,550 years ago, coinciding with massive population movements in the mid-Holocene triggered by aridification ~4,200 years ago. We show that present-day Lebanese derive most of their ancestry from a Canaanite-related population, which therefore implies substantial genetic continuity in the Levant since at least the Bronze Age. In addition, we find Eurasian ancestry in the Lebanese not present in Bronze Age or earlier Levantines. We estimate this Eurasian ancestry arrived in the Levant around 3,750-2,170 years ago during a period of successive conquests by distant populations such as the Persians and Macedonians.
biorxiv genetics 0-100-users 2017The Genomic History Of Southeastern Europe, bioRxiv, 2017-05-12
AbstractFarming was first introduced to southeastern Europe in the mid-7th millennium BCE – brought by migrants from Anatolia who settled in the region before spreading throughout Europe. To clarify the dynamics of the interaction between the first farmers and indigenous hunter-gatherers where they first met, we analyze genome-wide ancient DNA data from 223 individuals who lived in southeastern Europe and surrounding regions between 12,000 and 500 BCE. We document previously uncharacterized genetic structure, showing a West-East cline of ancestry in hunter-gatherers, and show that some Aegean farmers had ancestry from a different lineage than the northwestern Anatolian lineage that formed the overwhelming ancestry of other European farmers. We show that the first farmers of northern and western Europe passed through southeastern Europe with limited admixture with local hunter-gatherers, but that some groups mixed extensively, with relatively sex-balanced admixture compared to the male-biased hunter-gatherer admixture that prevailed later in the North and West. Southeastern Europe continued to be a nexus between East and West after farming arrived, with intermittent genetic contact from the Steppe up to 2,000 years before the migration that replaced much of northern Europe’s population.
biorxiv genetics 100-200-users 2017