Environmental factors dominate over host genetics in shaping human gut microbiota composition, bioRxiv, 2017-06-17

AbstractHuman gut microbiome composition is shaped by multiple host intrinsic and extrinsic factors, but the relative contribution of host genetic compared to environmental factors remains elusive. Here, we genotyped a cohort of 696 healthy individuals from several distinct ancestral origins and a relatively common environment, and demonstrate that there is no statistically significant association between microbiome composition and ethnicity, single nucleotide polymorphisms (SNPs), or overall genetic similarity, and that only 5 of 211 (2.4%) previously reported microbiome-SNP associations replicate in our cohort. In contrast, we find similarities in the microbiome composition of genetically unrelated individuals who share a household. We define the term biome-explainability as the variance of a host phenotype explained by the microbiome after accounting for the contribution of human genetics. Consistent with our finding that microbiome and host genetics are largely independent, we find significant biome-explainability levels of 16-33% for body mass index (BMI), fasting glucose, high-density lipoprotein (HDL) cholesterol, waist circumference, waist-hip ratio (WHR), and lactose consumption. We further show that several human phenotypes can be predicted substantially more accurately when adding microbiome data to host genetics data, and that the contribution of both data sources to prediction accuracy is largely additive. Overall, our results suggest that human microbiome composition is dominated by environmental factors rather than by host genetics.

biorxiv genetics 200-500-users 2017

Continuity and admixture in the last five millennia of Levantine history from ancient Canaanite and present-day Lebanese genome sequences, bioRxiv, 2017-05-27

The Canaanites inhabited the Levant region during the Bronze Age and established a culture which became influential in the Near East and beyond. However, the Canaanites, unlike most other ancient Near Easterners of this period, left few surviving textual records and thus their origin and relationship to ancient and present-day populations remain unclear. In this study, we sequenced five whole-genomes from ~3,700-year-old individuals from the city of Sidon, a major Canaanite city-state on the Eastern Mediterranean coast. We also sequenced the genomes of 99 individuals from present-day Lebanon to catalogue modern Levantine genetic diversity. We find that a Bronze Age Canaanite-related ancestry was widespread in the region, shared among urban populations inhabiting the coast (Sidon) and inland populations (Jordan) who likely lived in farming societies or were pastoral nomads. This Canaanite-related ancestry derived from mixture between local Neolithic populations and eastern migrants genetically related to Chalcolithic Iranians. We estimate, using linkage-disequilibrium decay patterns, that admixture occurred 6,600-3,550 years ago, coinciding with massive population movements in the mid-Holocene triggered by aridification ~4,200 years ago. We show that present-day Lebanese derive most of their ancestry from a Canaanite-related population, which therefore implies substantial genetic continuity in the Levant since at least the Bronze Age. In addition, we find Eurasian ancestry in the Lebanese not present in Bronze Age or earlier Levantines. We estimate this Eurasian ancestry arrived in the Levant around 3,750-2,170 years ago during a period of successive conquests by distant populations such as the Persians and Macedonians.

biorxiv genetics 0-100-users 2017

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo