Slide-seq A Scalable Technology for Measuring Genome-Wide Expression at High Spatial Resolution, bioRxiv, 2019-03-01
The spatial organization of cells in tissue has a profound influence on their function, yet a high-throughput, genome-wide readout of gene expression with cellular resolution is lacking. Here, we introduce Slide-seq, a highly scalable method that enables facile generation of large volumes of unbiased spatial transcriptomes with 10 micron spatial resolution, comparable to the size of individual cells. In Slide-seq, RNA is transferred from freshly frozen tissue sections onto a surface covered in DNA-barcoded beads with known positions, allowing the spatial locations of the RNA to be inferred by sequencing. To demonstrate Slide-seq's utility, we localized cell types identified by large-scale scRNA-seq datasets within the cerebellum and hippocampus. We next systematically characterized spatial gene expression patterns in the Purkinje layer of mouse cerebellum, identifying new axes of variation across Purkinje cell compartments. Finally, we used Slide-seq to define the temporal evolution of cell-type-specific responses in a mouse model of traumatic brain injury. Slide-seq will accelerate biological discovery by enabling routine, high-resolution spatial mapping of gene expression.
biorxiv genomics 500+-users 2019A Comprehensive Assessment of Demographic, Environmental and Host Genetic Associations with Gut Microbiome Diversity in Healthy Individuals, bioRxiv, 2019-02-28
Background The gut microbiome is an important determinant of human health. Its composition has been shown to be influenced by multiple environmental factors and likely by host genetic variation. In the framework of the Milieu Intérieur Consortium, a total of 1,000 healthy individuals of western European ancestry, with a 11 sex ratio and evenly stratified across five decades of life (age 20 - 69), were recruited. We generated 16S ribosomal RNA profiles from stool samples for 858 participants. We investigated genetic and non-genetic factors that contribute to individual differences in fecal microbiome composition.Results Among 110 demographic, clinical and environmental factors, 11 were identified as significantly correlated with α-diversity, β-diversity or abundance of specific microbial communities in multivariable models. Age and blood alanine aminotransferase levels showed the strongest associations with microbiome diversity. In total, all non-genetic factors explained 16.4% of the variance. We then searched for associations between >5 million single nucleotide polymorphisms and the same indicators of fecal microbiome diversity, including the significant non-genetic factors as covariates. No genome-wide significant associations were identified after correction for multiple testing. A small fraction of previously reported associations between human genetic variants and specific taxa could be replicated in our cohort, while no replication was observed for any of the diversity metrics.Conclusion In a well-characterized cohort of healthy individuals, we identified several non-genetic variables associated with fecal microbiome diversity. In contrast, host genetics only had a negligible influence. Demographic and environmental factors are thus the main contributors to fecal microbiome composition in healthy individuals.
biorxiv genomics 0-100-users 2019Human loss-of-function variants suggest that partial LRRK2 inhibition is a safe therapeutic strategy for Parkinsons disease, bioRxiv, 2019-02-28
Human genetic variants causing loss of function (LoF) of protein-coding genes provide natural in vivo models of gene inactivation, which are powerful indicators of gene function and the potential toxicity of therapeutic inhibitors targeting these genes. Gain of kinase function variants in LRRK2 are known to significantly increase the risk of Parkinsons disease suggesting that inhibition of LRRK2 kinase activity is a promising therapeutic strategy. Whilst preclinical studies in model organisms have raised some on-target toxicity concerns, the biological consequences of LRRK2 inhibition have not been well characterized in humans. Here we systematically analyse LoF variants in LRRK2 observed across 141,456 individuals sequenced in the Genome Aggregation Database (gnomAD) and over 4 million participants in the 23andMe genotyped dataset, to assess their impact at a molecular and phenotypic level. After thorough variant curation, we identify 1,358 individuals with high-confidence predicted LoF variants in LRRK2, several with experimental validation. We show that heterozygous LoF of LRRK2 reduces LRRK2 protein level by ~50% but is not associated with reduced life expectancy, or with any specific phenotype or disease state. These data suggest that therapeutics that downregulate LRRK2 levels or kinase activity by up to 50% are unlikely to have major on-target safety liabilities. Our results demonstrate the value of large scale genomic databases and phenotyping of human LoF carriers for target validation in drug discovery.
biorxiv genomics 100-200-users 2019Human loss-of-function variants suggest that partial LRRK2 inhibition is a safe therapeutic strategy for Parkinson’s disease, bioRxiv, 2019-02-28
AbstractHuman genetic variants causing loss-of-function (LoF) of protein-coding genes provide natural in vivo models of gene inactivation, which are powerful indicators of gene function and the potential toxicity of therapeutic inhibitors targeting these genes1,2. Gain-of-kinase-function variants in LRRK2 are known to significantly increase the risk of Parkinson’s disease3,4, suggesting that inhibition of LRRK2 kinase activity is a promising therapeutic strategy. Whilst preclinical studies in model organisms have raised some on-target toxicity concerns5–8, the biological consequences of LRRK2 inhibition have not been well characterized in humans. Here we systematically analyse LoF variants in LRRK2 observed across 141,456 individuals sequenced in the Genome Aggregation Database (gnomAD)9 and over 4 million participants in the 23andMe genotyped dataset, to assess their impact at a molecular and phenotypic level. After thorough variant curation, we identify 1,358 individuals with high-confidence predicted LoF variants in LRRK2, several with experimental validation. We show that heterozygous LoF of LRRK2 reduces LRRK2 protein level by ~50% but is not associated with reduced life expectancy, or with any specific phenotype or disease state. These data suggest that therapeutics that downregulate LRRK2 levels or kinase activity by up to 50% are unlikely to have major on-target safety liabilities. Our results demonstrate the value of large scale genomic databases and phenotyping of human LoF carriers for target validation in drug discovery.
biorxiv genomics 100-200-users 2019A positively selected, common, missense variant in FBN1 confers a 2.2 centimeter reduction of height in the Peruvian population, bioRxiv, 2019-02-26
Peruvians are among the shortest people in the world. To understand the genetic basis of short stature in Peru, we examined an ethnically diverse group of Peruvians and identified a novel, population-specific, missense variant in FBN1 (E1297G) that is significantly associated with lower height in the Peruvian population. Each copy of the minor allele (frequency = 4.7%) reduces height by 2.2 cm (4.4 cm in homozygous individuals). This is the largest effect size known for a common height-associated variant. This variant shows strong evidence of positive selection within the Peruvian population and is significantly more frequent in Native American populations from coastal regions of Peru compared to populations from the Andes or the Amazon, suggesting that short stature in Peruvians is the result of adaptation to the coastal environment.
biorxiv genomics 100-200-users 2019Samovar Single-sample mosaic SNV calling with linked reads, bioRxiv, 2019-02-26
We present Samovar, a mosaic single-nucleotide variant (SNV) caller for linked-read whole-genome shotgun sequencing data. Samovar scores candidate sites using a random forest model trained using the input dataset that considers read quality, phasing, and linked-read characteristics. We show Samovar calls mosaic SNVs within a single sample with accuracy comparable to what previously required trios or matched tumornormal pairs and outperform single-sample mosaic variant callers at MAF 5%-50% with at least 30x coverage. Furthermore, we use Samovar to find somatic variants in whole genome sequencing of both tumor and normal from 13 pediatric cancer cases that can be corroborated with high recall with whole exome sequencing. Samovar is available open-source at httpsgithub.comcdarbysamovar under the MIT license.
biorxiv genomics 0-100-users 2019