Amplification-free, CRISPR-Cas9 Targeted Enrichment and SMRT Sequencing of Repeat-Expansion Disease Causative Genomic Regions, bioRxiv, 2017-10-17

AbstractTargeted sequencing has proven to be an economical means of obtaining sequence information for one or more defined regions of a larger genome. However, most target enrichment methods require amplification. Some genomic regions, such as those with extreme GC content and repetitive sequences, are recalcitrant to faithful amplification. Yet, many human genetic disorders are caused by repeat expansions, including difficult to sequence tandem repeats.We have developed a novel, amplification-free enrichment technique that employs the CRISPR-Cas9 system for specific targeting multiple genomic loci. This method, in conjunction with long reads generated through Single Molecule, Real-Time (SMRT) sequencing and unbiased coverage, enables enrichment and sequencing of complex genomic regions that cannot be investigated with other technologies. Using human genomic DNA samples, we demonstrate successful targeting of causative loci for Huntington’s disease (HTT; CAG repeat), Fragile X syndrome (FMR1; CGG repeat), amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (C9orf72; GGGGCC repeat), and spinocerebellar ataxia type 10 (SCA10) (ATXN10; variable ATTCT repeat). The method, amenable to multiplexing across multiple genomic loci, uses an amplification-free approach that facilitates the isolation of hundreds of individual on-target molecules in a single SMRT Cell and accurate sequencing through long repeat stretches, regardless of extreme GC percent or sequence complexity content. Our novel targeted sequencing method opens new doors to genomic analyses independent of PCR amplification that will facilitate the study of repeat expansion disorders.

biorxiv genomics 0-100-users 2017

High-resolution genome-wide functional dissection of transcriptional regulatory regions in human, bioRxiv, 2017-09-28

AbstractGenome-wide epigenomic maps revealed millions of regions showing signatures of enhancers, promoters, and other gene-regulatory elements1. However, high-throughput experimental validation of their function and high-resolution dissection of their driver nucleotides remain limited in their scale and length of regions tested. Here, we present a new method, HiDRA (High-Definition Reporter Assay), that overcomes these limitations by combining components of Sharpr-MPRA2 and STARR-Seq3 with genome-wide selection of accessible regions from ATAC-Seq4. We used HiDRA to test ~7 million DNA fragments preferentially selected from accessible chromatin in the GM12878 lymphoblastoid cell line. By design, accessibility-selected fragments were highly overlapping (up to 370 per region), enabling us to pinpoint driver regulatory nucleotides by exploiting subtle differences in reporter activity between partially-overlapping fragments, using a new machine learning model SHARPR2. Our resulting maps include ~65,000 regions showing significant enhancer function and enriched for endogenous active histone marks (including H3K9ac, H3K27ac), regulatory sequence motifs, and regions bound by immune regulators. Within them, we discover ~13,000 high-resolution driver elements enriched for regulatory motifs and evolutionarily-conservednucleotides, and help predict causal genetic variants underlying disease from genome-wide association studies. Overall, HiDRA provides a general, scalable, high-throughput, and high-resolution approach for experimental dissection of regulatory regions and driver nucleotides in the context of human biology and disease.

biorxiv genomics 200-500-users 2017

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo