An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues, bioRxiv, 2017-08-27
ABSTRACTWe present Omni-ATAC, an improved ATAC-seq protocol for chromatin accessibility profiling that works across multiple applications with substantial improvement of signal-to-background ratio and information content. The Omni-ATAC protocol enables chromatin accessibility profiling from archival frozen tissue samples and 50 μm sections, revealing the activities of disease-associated DNA elements in distinct human brain structures. The Omni-ATAC protocol enables the interrogation of personal regulomes in tissue context and translational studies.
biorxiv genomics 100-200-users 2017Rapid profiling of the preterm infant gut microbiota using nanopore sequencing aids pathogen diagnostics, bioRxiv, 2017-08-25
ABSTRACTThe Oxford Nanopore MinION sequencing platform offers near real time analysis of DNA reads as they are generated, which makes the device attractive for in-field or clinical deployment, e.g. rapid diagnostics. We used the MinION platform for shotgun metagenomic sequencing and analysis of gut-associated microbial communities; firstly, we used a 20-species human microbiota mock community to demonstrate how Nanopore metagenomic sequence data can be reliably and rapidly classified. Secondly, we profiled faecal microbiomes from preterm infants at increased risk of necrotising enterocolitis and sepsis. In single patient time course, we captured the diversity of the immature gut microbiota and observed how its complexity changes over time in response to interventions, i.e. probiotic, antibiotics and episodes of suspected sepsis. Finally, we performed ‘real-time’ runs from sample to analysis using faecal samples of critically ill infants and of healthy infants receiving probiotic supplementation. Real-time analysis was facilitated by our new NanoOK RT software package which analysed sequences as they were generated. We reliably identified potentially pathogenic taxa (i.e. Klebsiella pneumoniae and Enterobacter cloacae) and their corresponding antimicrobial resistance (AMR) gene profiles within as little as one hour of sequencing. Antibiotic treatment decisions may be rapidly modified in response to these AMR profiles, which we validated using pathogen isolation, whole genome sequencing and antibiotic susceptibility testing. Our results demonstrate that our pipeline can process clinical samples to a rich dataset able to inform tailored patient antimicrobial treatment in less than 5 hours.
biorxiv genomics 100-200-users 2017A Large-Scale Binding and Functional Map of Human RNA Binding Proteins, bioRxiv, 2017-08-24
Genomes encompass all the information necessary to specify the development and function of an organism. In addition to genes, genomes also contain a myriad of functional elements that control various steps in gene expression. A major class of these elements function only when transcribed into RNA as they serve as the binding sites for RNA binding proteins (RBPs), which act to control post-transcriptional processes including splicing, cleavage and polyadenylation, RNA editing, RNA localization, stability, and translation. Despite the importance of these functional RNA elements encoded in the genome, they have been much less studied than genes and DNA elements. Here, we describe the mapping and characterization of RNA elements recognized by a large collection of human RBPs in K562 and HepG2 cells. These data expand the catalog of functional elements encoded in the human genome by addition of a large set of elements that function at the RNA level through interaction with RBPs.
biorxiv genomics 200-500-users 2017An atlas of genetic associations in UK Biobank, bioRxiv, 2017-08-17
ABSTRACTGenome-wide association studies have revealed many loci contributing to the variation of complex traits, yet the majority of loci that contribute to the heritability of complex traits remain elusive. Large study populations with sufficient statistical power are required to detect the small effect sizes of the yet unidentified genetic variants. However, the analysis of huge cohorts, like UK Biobank, is complicated by incidental structure present when collecting such large cohorts. For instance, UK Biobank comprises 107,162 third degree or closer related participants. Traditionally, GWAS have removed related individuals because they comprised an insignificant proportion of the overall sample size, however, removing related individuals in UK Biobank would entail a substantial loss of power. Furthermore, modelling such structure using linear mixed models is computationally expensive, which requires a computational infrastructure that may not be accessible to all researchers. Here we present an atlas of genetic associations for 118 non-binary and 599 binary traits of 408,455 related and unrelated UK Biobank participants of White-British descent. Results are compiled in a publicly accessible database that allows querying genome-wide association summary results for 623,944 genotyped and HapMap2 imputed SNPs, as well downloading whole GWAS summary statistics for over 30 million imputed SNPs from the Haplotype Reference Consortium panel. Our atlas of associations (GeneATLAS, <jatsext-link xmlnsxlink=httpwww.w3.org1999xlink ext-link-type=uri xlinkhref=httpgeneatlas.roslin.ed.ac.uk>httpgeneatlas.roslin.ed.ac.uk<jatsext-link>) will help researchers to query UK Biobank results in an easy way without the need to incur in high computational costs.
biorxiv genomics 100-200-users 2017Frequent lack of repressive capacity of promoter DNA methylation identified through genome-wide epigenomic manipulation, bioRxiv, 2017-08-17
AbstractIt is widely assumed that the addition of DNA methylation at CpG rich gene promoters silences gene transcription. However, this conclusion is largely drawn from the observation that promoter DNA methylation inversely correlates with gene expression in natural conditions. The effect of induced DNA methylation on endogenous promoters has yet to be comprehensively assessed. Here, we induced the simultaneous methylation of thousands of promoters in the genome of human cells using an engineered zinc finger-DNMT3A fusion protein, enabling assessment of the effect of forced DNA methylation upon transcription, histone modifications, and DNA methylation persistence after the removal of the fusion protein. We find that DNA methylation is frequently insufficient to transcriptionally repress promoters. Furthermore, DNA methylation deposited at promoter regions associated with H3K4me3 is rapidly erased after removal of the zinc finger-DNMT3A fusion protein. Finally, we demonstrate that induced DNA methylation can exist simultaneously on promoter nucleosomes that possess the active histone modification H3K4me3, or DNA bound by the initiated form of RNA polymerase II. These findings suggest that promoter DNA methylation is not generally sufficient for transcriptional inactivation, with implications for the emerging field of epigenome engineering.One Sentence SummaryGenome-wide epigenomic manipulation of thousands of human promoters reveals that induced promoter DNA methylation is unstable and frequently does not function as a primary instructive biochemical signal for gene silencing and chromatin reconfiguration.
biorxiv genomics 500+-users 2017Systematic mapping of chromatin state landscapes during mouse development, bioRxiv, 2017-07-22
SUMMARYEmbryogenesis requires epigenetic information that allows each cell to respond appropriately to developmental cues. Histone modifications are core components of a cell’s epigenome, giving rise to chromatin states that modulate genome function. Here, we systematically profile histone modifications in a diverse panel of mouse tissues at 8 developmental stages from 10.5 days post conception until birth, performing a total of 1,128 ChIP-seq assays across 72 distinct tissue-stages. We combine these histone modification profiles into a unified set of chromatin state annotations, and track their activity across developmental time and space. Through integrative analysis we identify dynamic enhancers, reveal key transcriptional regulators, and characterize the role of chromatin-based repression in developmental gene regulation. We also leverage these data to link enhancers to putative target genes, revealing connections between coding and non-coding sequence variation in disease etiology. Our study provides a compendium of resources for biomedical researchers, and achieves the most comprehensive view of embryonic chromatin states to date.
biorxiv genomics 100-200-users 2017