Integrated analysis of single cell transcriptomic data across conditions, technologies, and species, bioRxiv, 2017-07-19

ABSTRACTSingle cell RNA-seq (scRNA-seq) has emerged as a transformative tool to discover and define cellular phenotypes. While computational scRNA-seq methods are currently well suited for experiments representing a single condition, technology, or species, analyzing multiple datasets simultaneously raises new challenges. In particular, traditional analytical workflows struggle to align subpopulations that are present across datasets, limiting the possibility for integrated or comparative analysis. Here, we introduce a new computational strategy for scRNA-seq alignment, utilizing common sources of variation to identify shared subpopulations between datasets as part of our R toolkit Seurat. We demonstrate our approach by aligning scRNA-seq datasets of PBMCs under resting and stimulated conditions, hematopoietic progenitors sequenced across two profiling technologies, and pancreatic cell ‘atlases’ generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across datasets, and can identify subpopulations that could not be detected by analyzing datasets independently. We anticipate that these methods will serve not only to correct for batch or technology-dependent effects, but also to facilitate general comparisons of scRNA-seq datasets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution.AvailabilityInstallation instructions, documentation, and tutorials are available at <jatsext-link xmlnsxlink=httpwww.w3.org1999xlink ext-link-type=uri xlinkhref=httpwww.satijalab.orgseurat>httpwww.satijalab.orgseurat<jatsext-link>

biorxiv genomics 100-200-users 2017

Single nucleus analysis of the chromatin landscape in mouse forebrain development, bioRxiv, 2017-07-05

ABSTRACTGenome-wide analysis of chromatin accessibility in primary tissues has uncovered millions of candidate regulatory sequences in the human and mouse genomes1–4. However, the heterogeneity of biological samples used in previous studies has prevented a precise understanding of the dynamic chromatin landscape in specific cell types. Here, we show that analysis of the transposase-accessible-chromatin in single nuclei isolated from frozen tissue samples can resolve cellular heterogeneity and delineate transcriptional regulatory sequences in the constituent cell types. Our strategy is based on a combinatorial barcoding assisted single cell assay for transposase-accessible chromatin5 and is optimized for nuclei from flash-frozen primary tissue samples (snATAC-seq). We used this method to examine the mouse forebrain at seven development stages and in adults. From snATAC-seq profiles of more than 15,000 high quality nuclei, we identify 20 distinct cell populations corresponding to major neuronal and non-neuronal cell-types in foetal and adult forebrains. We further define cell-type specific cis regulatory sequences and infer potential master transcriptional regulators of each cell population. Our results demonstrate the feasibility of a general approach for identifying cell-type-specific cis regulatory sequences in heterogeneous tissue samples, and provide a rich resource for understanding forebrain development in mammals.

biorxiv genomics 0-100-users 2017

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo