The cis-regulatory dynamics of embryonic development at single cell resolution, bioRxiv, 2017-07-21
ABSTRACTSingle cell measurements of gene expression are providing new insights into lineage commitment, yet the regulatory changes underlying individual cell trajectories remain elusive. Here, we profiled chromatin accessibility in over 20,000 single nuclei across multiple stages of Drosophila embryogenesis. Our data reveal heterogeneity in the regulatory landscape prior to gastrulation that reflects anatomical position, a feature that aligns with future cell fate. During mid embryogenesis, tissue granularity emerges such that cell types can be inferred by their chromatin accessibility, while maintaining a signature of their germ layer of origin. We identify over 30,000 distal elements with tissue-specific accessibility. Using transgenic embryos, we tested the germ layer specificity of a subset of predicted enhancers, achieving near-perfect accuracy. Overall, these data demonstrate the power of shotgun single cell profiling of embryos to resolve dynamic changes in open chromatin during development, and to uncover the cis-regulatory programs of germ layers and cell types.
biorxiv genomics 200-500-users 2017Integrated analysis of single cell transcriptomic data across conditions, technologies, and species, bioRxiv, 2017-07-19
ABSTRACTSingle cell RNA-seq (scRNA-seq) has emerged as a transformative tool to discover and define cellular phenotypes. While computational scRNA-seq methods are currently well suited for experiments representing a single condition, technology, or species, analyzing multiple datasets simultaneously raises new challenges. In particular, traditional analytical workflows struggle to align subpopulations that are present across datasets, limiting the possibility for integrated or comparative analysis. Here, we introduce a new computational strategy for scRNA-seq alignment, utilizing common sources of variation to identify shared subpopulations between datasets as part of our R toolkit Seurat. We demonstrate our approach by aligning scRNA-seq datasets of PBMCs under resting and stimulated conditions, hematopoietic progenitors sequenced across two profiling technologies, and pancreatic cell ‘atlases’ generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across datasets, and can identify subpopulations that could not be detected by analyzing datasets independently. We anticipate that these methods will serve not only to correct for batch or technology-dependent effects, but also to facilitate general comparisons of scRNA-seq datasets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution.AvailabilityInstallation instructions, documentation, and tutorials are available at <jatsext-link xmlnsxlink=httpwww.w3.org1999xlink ext-link-type=uri xlinkhref=httpwww.satijalab.orgseurat>httpwww.satijalab.orgseurat<jatsext-link>
biorxiv genomics 100-200-users 2017Genomics of Mesolithic Scandinavia reveal colonization routes and high-latitude adaptation, bioRxiv, 2017-07-18
AbstractScandinavia was one of the last geographic areas in Europe to become habitable for humans after the last glaciation. However, the origin(s) of the first colonizers and their migration routes remain unclear. We sequenced the genomes, up to 57x coverage, of seven hunter-gatherers excavated across Scandinavia and dated to 9,500-6,000 years before present. Surprisingly, among the Scandinavian Mesolithic individuals, the genetic data display an east-west genetic gradient that opposes the pattern seen in other parts of Mesolithic Europe. This result suggests that Scandinavia was initially colonized following two different routes one from the south, the other from the northeast. The latter followed the ice-free Norwegian north Atlantic coast, along which novel and advanced pressure-blade stone-tool techniques may have spread. These two groups met and mixed in Scandinavia, creating a genetically diverse population, which shows patterns of genetic adaptation to high latitude environments. These adaptations include high frequencies of low pigmentation variants and a gene-region associated with physical performance, which shows strong continuity into modern-day northern Europeans.
biorxiv genomics 0-100-users 2017Sequential regulatory activity prediction across chromosomes with convolutional neural networks, bioRxiv, 2017-07-11
AbstractModels for predicting phenotypic outcomes from genotypes have important applications to understanding genomic function and improving human health. Here, we develop a machine-learning system to predict cell type-specific epigenetic and transcriptional profiles in large mammalian genomes from DNA sequence alone. Using convolutional neural networks, this system identifies promoters and distal regulatory elements and synthesizes their content to make effective gene expression predictions. We show that model predictions for the influence of genomic variants on gene expression align well to causal variants underlying eQTLs in human populations and can be useful for generating mechanistic hypotheses to enable fine mapping of disease loci.
biorxiv genomics 0-100-users 2017Single nucleus analysis of the chromatin landscape in mouse forebrain development, bioRxiv, 2017-07-05
ABSTRACTGenome-wide analysis of chromatin accessibility in primary tissues has uncovered millions of candidate regulatory sequences in the human and mouse genomes1–4. However, the heterogeneity of biological samples used in previous studies has prevented a precise understanding of the dynamic chromatin landscape in specific cell types. Here, we show that analysis of the transposase-accessible-chromatin in single nuclei isolated from frozen tissue samples can resolve cellular heterogeneity and delineate transcriptional regulatory sequences in the constituent cell types. Our strategy is based on a combinatorial barcoding assisted single cell assay for transposase-accessible chromatin5 and is optimized for nuclei from flash-frozen primary tissue samples (snATAC-seq). We used this method to examine the mouse forebrain at seven development stages and in adults. From snATAC-seq profiles of more than 15,000 high quality nuclei, we identify 20 distinct cell populations corresponding to major neuronal and non-neuronal cell-types in foetal and adult forebrains. We further define cell-type specific cis regulatory sequences and infer potential master transcriptional regulators of each cell population. Our results demonstrate the feasibility of a general approach for identifying cell-type-specific cis regulatory sequences in heterogeneous tissue samples, and provide a rich resource for understanding forebrain development in mammals.
biorxiv genomics 0-100-users 2017The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum, bioRxiv, 2017-07-04
AbstractCommon bread wheat, Triticum aestivum, has one of the most complex genomes known to science, with 6 copies of each chromosome, enormous numbers of near-identical sequences scattered throughout, and an overall size of more than 15 billion bases. Multiple past attempts to assemble the genome have failed. Here we report the first successful assembly of T. aestivum, using deep sequencing coverage from a combination of short Illumina reads and very long Pacific Biosciences reads. The final assembly contains 15,344,693,583 bases and has a weighted average (N50) contig size of of 232,659 bases. This represents by far the most complete and contiguous assembly of the wheat genome to date, providing a strong foundation for future genetic studies of this important food crop. We also report how we used the recently published genome of Aegilops tauschii, the diploid ancestor of the wheat D genome, to identify 4,179,762,575 bp of T. aestivum that correspond to its D genome components.
biorxiv genomics 200-500-users 2017