Reversal of ageing- and injury-induced vision loss by Tet-dependent epigenetic reprogramming, bioRxiv, 2019-07-31
Ageing is a degenerative process leading to tissue dysfunction and death. A proposed cause of ageing is the accumulation of epigenetic noise, which disrupts youthful gene expression patterns that are required for cells to function optimally and recover from damage1–3. Changes to DNA methylation patterns over time form the basis of an ‘ageing clock’4, 5, but whether old individuals retain information to reset the clock and, if so, whether this would improve tissue function is not known. Of all the tissues in the body, the central nervous system (CNS) is one of the first to lose regenerative capacity6, 7. Using the eye as a model tissue, we show that expression of Oct4, Sox2, and Klf4 genes (OSK) in mice resets youthful gene expression patterns and the DNA methylation age of retinal ganglion cells, promotes axon regeneration after optic nerve crush injury, and restores vision in a mouse model of glaucoma and in normal old mice. This process, which we call recovery of information via epigenetic reprogramming or REVIVER, requires the DNA demethylases Tet1 and Tet2, indicating that DNA methylation patterns don’t just indicate age, they participate in ageing. Thus, old tissues retain a faithful record of youthful epigenetic information that can be accessed for functional age reversal.
biorxiv molecular-biology 500+-users 2019Nanopore direct RNA sequencing maps an Arabidopsis N6 methyladenosine epitranscriptome, bioRxiv, 2019-07-17
AbstractUnderstanding genome organization and gene regulation requires insight into RNA transcription, processing and modification. We adapted nanopore direct RNA sequencing to examine RNA from a wild-type accession of the model plant Arabidopsis thaliana and a mutant defective in mRNA methylation (m6A). Here we show that m6A can be mapped in full-length mRNAs transcriptome-wide and reveal the combinatorial diversity of cap-associated transcription start sites, splicing events, poly(A) site choice and poly(A) tail length. Loss of m6A from 3’ untranslated regions is associated with decreased relative transcript abundance and defective RNA 3′ end formation. A functional consequence of disrupted m6A is a lengthening of the circadian period. We conclude that nanopore direct RNA sequencing can reveal the complexity of mRNA processing and modification in full-length single molecule reads. These findings can refine Arabidopsis genome annotation. Further, applying this approach to less well-studied species could transform our understanding of what their genomes encode.
biorxiv molecular-biology 0-100-users 2019Super-resolution Imaging Reveals 3D Structure and Organizing Mechanism of Accessible Chromatin, bioRxiv, 2019-06-22
Access to cis-regulatory elements packaged in chromatin is essential for directing gene expression and cell viability. Here, we report a super-resolution imaging strategy, 3D ATAC-PALM, that enables direct visualization of the entire accessible genome. We found that active chromosomal segments are organized into spatially-segregated accessible chromatin domains (ACDs). Rapid depletion of CTCF or Cohesin (RAD21 subunit) induced enhanced ACD clustering, reduced physical separation between intrachromosomal ACDs, and differentially regulated ACD compaction. Experimental perturbations and polymer modeling suggest that dynamic protein-protein and protein-DNA interactions within ACDs couple with loop extrusion to organize ACD topology. Dysorganization of ACDs upon CTCF or Cohesin loss alters transcription factor binding and target search dynamics in living cells. These results uncover fundamental mechanisms underpinning the formation of 3D genome architecture and its pivotal function in transcriptional regulation.
biorxiv molecular-biology 100-200-users 2019Enabling high-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing, bioRxiv, 2019-05-24
AbstractHigh-throughput amplicon sequencing of large genomic regions remains challenging for short-read technologies. Here, we report a high-throughput amplicon sequencing approach combining unique molecular identifiers (UMIs) with Oxford Nanopore Technologies or Pacific Biosciences CCS sequencing, yielding high accuracy single-molecule consensus sequences of large genomic regions. Our approach generates amplicon and genomic sequences of >10,000 bp in length with a mean error-rate of 0.0049-0.0006% and chimera rate <0.022%.
biorxiv molecular-biology 200-500-users 2019Cryo-EM structure of the ClpXP protein degradation machinery, bioRxiv, 2019-05-15
AbstractThe ClpXP machinery is a two component protease complex performing targeted protein degradation in bacteria and eukaryotes. The complex consists of the AAA+ chaperone ClpX and the peptidase ClpP. The hexameric ClpX utilizes the energy of ATP binding and hydrolysis to engage, unfold and translocate substrates into the catalytic chamber of tetradecameric ClpP where they are degraded. Formation of the complex involves a symmetry mismatch, since hexameric AAA+ rings bind axially to the opposing stacked heptameric rings of the tetradecameric ClpP. Here we present the first high-resolution cryo-EM structure of ClpXP from Listeria monocytogenes. We unravel the heptamer-hexamer binding interface and provide novel insights into the ClpX-ClpP crosstalk and activation mechanism. The comparison with available crystal structures of ClpP and ClpX in different states allows us to understand important aspects of ClpXP’s complex mode of action and provides a structural framework for future pharmacological applications.
biorxiv molecular-biology 100-200-users 2019Structural and Functional Characterization of G Protein-Coupled Receptors with Deep Mutational Scanning, bioRxiv, 2019-04-30
AbstractIn humans, the 813 G protein-coupled receptors (GPCRs) are responsible for transducing diverse chemical stimuli to alter cell state, and are the largest class of drug targets. Their myriad structural conformations and various modes of signaling make it challenging to understand their structure and function. Here we developed a platform to characterize large libraries of GPCR variants in human cell lines with a barcoded transcriptional reporter of G-protein signal transduction. We tested 7,800 of 7,828 possible single amino acid substitutions to the beta-2 adrenergic receptor (β2AR) at four concentrations of the agonist isoproterenol. We identified residues specifically important for β2AR signaling, mutations in the human population that are potentially loss of function, and residues that modulate basal activity. Using unsupervised learning, we resolve residues critical for signaling, including all major structural motifs and molecular interfaces. We also find a previously uncharacterized structural latch spanning the first two extracellular loops that is highly conserved across Class A GPCRs and is conformationally rigid in both the inactive and active states of the receptor. More broadly, by linking deep mutational scanning with engineered transcriptional reporters, we establish a generalizable method for exploring pharmacogenomics, structure and function across broad classes of drug receptors.
biorxiv molecular-biology 0-100-users 2019