Equivalent high-resolution identification of neuronal cell types with single-nucleus and single-cell RNA-sequencing, bioRxiv, 2017-12-26
Transcriptional profiling of complex tissues by RNA-sequencing of single nuclei presents some advantages over whole cell analysis. It enables unbiased cellular coverage, lack of cell isolation-based transcriptional effects, and application to archived frozen specimens. Using a well-matched pair of single-nucleus RNA-seq (snRNA-seq) and single-cell RNA-seq (scRNA-seq) SMART-Seq v4 datasets from mouse visual cortex, we demonstrate that similarly high-resolution clustering of closely related neuronal types can be achieved with both methods if intronic sequences are included in nuclear RNA-seq analysis. More transcripts are detected in individual whole cells (~11,000 genes) than nuclei (~7,000 genes), but the majority of genes have similar detection across cells and nuclei. We estimate that the nuclear proportion of total cellular mRNA varies from 20% to over 50% for large and small pyramidal neurons, respectively. Together, these results illustrate the high information content of nuclear RNA for characterization of cellular diversity in brain tissues.
biorxiv neuroscience 0-100-users 2017Rethinking dopamine as generalized prediction error, bioRxiv, 2017-12-26
AbstractMidbrain dopamine neurons are commonly thought to report a reward prediction error, as hypothesized by reinforcement learning theory. While this theory has been highly successful, several lines of evidence suggest that dopamine activity also encodes sensory prediction errors unrelated to reward. Here we develop a new theory of dopamine function that embraces a broader conceptualization of prediction errors. By signaling errors in both sensory and reward predictions, dopamine supports a form of reinforcement learning that lies between model-based and model-free algorithms. This account remains consistent with current canon regarding the correspondence between dopamine transients and reward prediction errors, while also accounting for new data suggesting a role for these signals in phenomena such as sensory preconditioning and identity unblocking, which ostensibly draw upon knowledge beyond reward predictions.
biorxiv neuroscience 100-200-users 2017Emergence of reward expectation signals in identified dopamine neurons, bioRxiv, 2017-12-23
AbstractCoherent control of purposive actions emerges from the coordination of multiple brain circuits during learning. Dissociable brain circuits and cell-types are thought to preferentially participate in distinct learning mechanisms. For example, the activity of midbrain dopamine (mDA) neurons is proposed to primarily, or even exclusively, reflect reward prediction error signals in well-trained animals. To study the specific contribution of individual circuits requires observing changes before tight functional coordination is achieved. However, little is known about the detailed timing of the emergence of reward-related representations in dopaminergic neurons. Here we recorded activity of identified dopaminergic neurons as naïve mice learned a novel stimulus-reward association. We found that at early stages of learning mDA neuron activity reflected both external (sensory) and internal (action initiation) causes of reward expectation. The increasingly precise correlation of action initiation with sensory stimuli rather than an evaluation of outcomes governed mDA neuron activity. Thus, our data demonstrate that mDA neuron activity early in learning does not reflect errors, but is more akin to a Hebbian learning signal - providing new insight into a critical computation in a highly conserved, essential learning circuit.
biorxiv neuroscience 100-200-users 2017Cellular diversity in the Drosophila midbrain revealed by single-cell transcriptomics, bioRxiv, 2017-12-22
AbstractTo understand the brain, molecular details need to be overlaid onto neural wiring diagrams so that synaptic mode, neuromodulation and critical signaling operations can be considered. Single-cell transcriptomics provide a unique opportunity to collect this information. Here we present an initial analysis of thousands of individual cells from Drosophila midbrain, that were acquired using Drop-Seq. A number of approaches permitted the assignment of transcriptional profiles to several major brain regions and cell-types. Expression of biosynthetic enzymes and reuptake mechanisms allows all the neurons to be typed according to the neurotransmitter or neuromodulator that they produce and presumably release. Some neuropeptides are preferentially co-expressed in neurons using a particular fast-acting transmitter, or monoamine. Neuromodulatory and neurotransmitter receptor subunit expression illustrates the potential of these molecules in generating complexity in neural circuit function. This cell atlas dataset provides an important resource to link molecular operations to brain regions and complex neural processes.
biorxiv neuroscience 0-100-users 2017Social interactions impact on the dopaminergic system and drive individuality, bioRxiv, 2017-12-20
SummaryIndividuality is a ubiquitous and well-conserved feature among animal species. The behavioral patterns of individual animals affect their respective role in the ecosystem and their prospects for survival. Even though some of the factors shaping individuality have been identified, the mechanisms underlying individuation are poorly understood and are generally considered to be genetics-based. Here we devised a large environment where mice live continuously, and observed that individuality, measured by both social and individual traits, emerged and settled within the group. Midbrain dopamine neurons underwent neurophysiological adaptations that mirrored this phenotypic divergence in individual behaviors. Strikingly, modifying the social environment resulted in a fast re-adaptation of both the animal’s personality and its dopaminergic signature. These results indicate that individuality can rapidly evolve upon social challenges, and does not just depend on the genetic or epigenetic initial status of the animal.
biorxiv neuroscience 0-100-users 2017Coherent representations of subjective spatial position in primary visual cortex and hippocampus, bioRxiv, 2017-12-19
A major role of vision is to guide navigation, and navigation is strongly driven by vision1-4. Indeed, the brain’s visual and navigational systems are known to interact5, 6, and signals related to position in the environment have been suggested to appear as early as in visual cortex6, 7. To establish the nature of these signals we recorded in primary visual cortex (V1) and in the CA1 region of the hippocampus while mice traversed a corridor in virtual reality. The corridor contained identical visual landmarks in two positions, so that a purely visual neuron would respond similarly in those positions. Most V1 neurons, however, responded solely or more strongly to the landmarks in one position. This modulation of visual responses by spatial location was not explained by factors such as running speed. To assess whether the modulation is related to navigational signals and to the animal’s subjective estimate of position, we trained the mice to lick for a water reward upon reaching a reward zone in the corridor. Neuronal populations in both CA1 and V1 encoded the animal’s position along the corridor, and the errors in their representations were correlated. Moreover, both representations reflected the animal’s subjective estimate of position, inferred from the animal’s licks, better than its actual position. Indeed, when animals licked in a given location – whether correct or incorrect – neural populations in both V1 and CA1 placed the animal in the reward zone. We conclude that visual responses in V1 are tightly controlled by navigational signals, which are coherent with those encoded in hippocampus, and reflect the animal’s subjective position in the environment. The presence of such navigational signals as early as in a primary sensory area suggests that these signals permeate sensory processing in the cortex.
biorxiv neuroscience 100-200-users 2017