Structural basis for recognition of RALF peptides by LRX proteins during pollen tube growth, bioRxiv, 2019-07-08

AbstractPlant reproduction relies on the highly regulated growth of the pollen tube for proper sperm delivery. This process is controlled by secreted RALF signaling peptides, which have been previously shown to be perceived by CrRLK1Ls membrane receptor-kinases and leucine-rich (LRR) extensin proteins (LRXs). Here we demonstrate that RALF peptides are active as folded, disulfide bond-stabilized proteins, which can bind to the LRR domain of LRX proteins with nanomolar affinity. Crystal structures of the LRX-RALF signaling complexes reveal LRX proteins as constitutive dimers. The N-terminal LRR domain containing the RALF binding site is tightly linked to the extensin domain via a cysteine-rich tail. Our biochemical and structural work reveals a complex signaling network by which RALF ligands may instruct different signaling proteins – here CrRLK1Ls and LRXs – through structurally different binding modes to orchestrate cell wall remodeling in rapidly growing pollen tubes.SignificancePlant reproduction relies on proper pollen tube growth to reach the female tissue and release the sperm cells. This process is highly regulated by a family of secreted signaling peptides that are recognized by cell-wall monitoring proteins to enable plant fertilization. Here, we report the crystal structure of the LRX-RALF cell-wall complex and we demonstrate that RALF peptides are active as folded proteins. RALFs are autocrine signaling proteins able to instruct LRX cell-wall modules and CrRKL1L receptors, through structurally different binding modes to coordinate pollen tube integrity.

biorxiv plant-biology 0-100-users 2019

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo