Convergent gene loss in aquatic plants predicts new components of plant immunity and drought response, bioRxiv, 2019-03-11

AbstractThe transition of plants from sea to land sparked an arms race with pathogens. The increased susceptibility of land plants is largely thought to be due to their dependence on micro-organisms for nutrients; the ensuing co-evolution has shaped the plant immune system. By profiling the immune receptors across flowering plants, we identified species with low numbers of NLR immune receptors. Interestingly, four of these species represent distinct lineages of monocots and dicots that returned to the aquatic lifestyle. Both aquatic monocot and dicot species lost the same well-known downstream immune signalling complex (EDS1-PAD4). This observation inspired us to look for other genes with a similar loss pattern and allowed us to predict putative new components of plant immunity. Gene expression analyses confirmed that a group of these genes was differentially expressed under pathogen infection. Excitingly, another subset of these genes was differentially expressed upon drought. Collectively, our study reveals the minimal plant immune system required for life under water, and highlights additional components required for the life of land plants.Author summaryPlant resistance to pathogens is commonly mediated by a complex gene family, known as NLRs. Upon pathogen infection, changes in the cellular environment trigger NLR activation and subsequent defence responses. Despite the dependence of agricultural practices on NLR genes to control pathogen load, relatively little is known about this gene family outside of model crop species. In this study, we identified a convergent reduction in the NLR gene family among two lineages of aquatic plants. Furthermore, we established that NLR reduction occurred in conjunction with the loss of a common immune signalling pathway. Subsequently, we identified other genes convergently lost in aquatic species and propose these as candidate components of the plant immune signalling pathway. In addition, we revealed components of the agronomically important drought response to be lost in aquatic plants. This study adds to our understanding of the complex interactions between environment and response to biotic stress, widely known as the disease triangle. The pathways identified in this study shed further light on the link between responses to drought and disease.

biorxiv plant-biology 100-200-users 2019

Auxin export from proximal fruits drives arrest in competent inflorescence meristems, bioRxiv, 2019-02-06

A well-defined set of regulatory pathways control entry into the reproductive phase in flowering plants. Conversely, little is known about the mechanisms that control the end of the reproductive phase (floral arrest), despite this being a critical process for optimising fruit and seed production. Complete fruit removal or lack of fertile fruit-set in male sterile mutants, for example male sterile1 (ms1), prevents timely floral arrest in the model plant Arabidopsis. These observations formed the basis for Hensel and colleagues model in which end-of-flowering was proposed to result from a cumulative fruitseed-derived signal that caused simultaneous global proliferative arrest (GPA) in all inflorescences. Recent studies have suggested that end-of-flowering involves gene expression changes at the floral meristem which are at least in part controlled by the FRUITFULL-APETELA2 pathway, however there is limited understanding of how this process is controlled and the communication needed at the whole plant level. Here, we provide new information providing a framework for the fruit-to-meristem (F-M) communication implied by the GPA model. We show that floral arrest in Arabidopsis is not global and does not occur synchronously between branches, but rather that the arrest of each inflorescence is a local process, driven by auxin export from fruit proximal to the inflorescence meristem (IM). Furthermore, we show that inflorescence meristems are only competent for floral arrest once they reach a certain developmental age. Understanding the regulation of floral arrest is of major importance for the future manipulation of flowering to extend and maximise crop yields.

biorxiv plant-biology 0-100-users 2019

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo