Reconstruction of motor control circuits in adult Drosophila using automated transmission electron microscopy, bioRxiv, 2020-01-12
SUMMARYMany animals use coordinated limb movements to interact with and navigate through the environment. To investigate circuit mechanisms underlying locomotor behavior, we used serial-section electron microscopy (EM) to map synaptic connectivity within a neuronal network that controls limb movements. We present a synapse-resolution EM dataset containing the ventral nerve cord (VNC) of an adult female Drosophila melanogaster. To generate this dataset, we developed GridTape, a technology that combines automated serial-section collection with automated high-throughput transmission EM. Using this dataset, we reconstructed 507 motor neurons, including all those that control the legs and wings. We show that a specific class of leg sensory neurons directly synapse onto the largest-caliber motor neuron axons on both sides of the body, representing a unique feedback pathway for fast limb control. We provide open access to the dataset and reconstructions registered to a standard atlas to permit matching of cells between EM and light microscopy data. We also provide GridTape instrumentation designs and software to make large-scale EM data acquisition more accessible and affordable to the scientific community.
biorxiv neuroscience 100-200-users 2020Using Natural Language Processing to Learn the Grammar of Glycans, bioRxiv, 2020-01-12
AbstractWhile nucleic acids and proteins receive ample attention, progress on understanding the structural and functional roles of carbohydrates has lagged behind. Here, we develop a language model for glycans, SweetTalk, taking into account glycan connectivity and composition. We use this model to investigate motifs in glycan substructures, classify them according to their O-N-linkage, and predict their immunogenicity with an accuracy of ∼92%, opening up the potential for rational glycoengineering.
biorxiv bioinformatics 0-100-users 2020Dissecting the collateral damage of antibiotics on gut microbes, bioRxiv, 2020-01-10
AbstractAntibiotics are used for fighting pathogens, but also target our commensal bacteria as a side effect, disturbing the gut microbiota composition and causing dysbiosis and disease1-3. Despite this well-known collateral damage, the activity spectrum of the different antibiotic classes on gut bacteria remains poorly characterized. Having monitored the activities of >1,000 marketed drugs on 38 representative species of the healthy human gut microbiome4, we here characterize further the 144 antibiotics therein, representing all major classes. We determined >800 Minimal Inhibitory Concentrations (MICs) and extended the antibiotic profiling to 10 additional species to validate these results and link to available data on antibiotic breakpoints for gut microbes. Antibiotic classes exhibited distinct inhibition spectra, including generation-dependent effects by quinolones and phylogeny-independence by β-lactams. Macrolides and tetracyclines, two prototypic classes of bacteriostatic protein synthesis inhibitors, inhibited almost all commensals tested. We established that both kill different subsets of prevalent commensal bacteria, and cause cell lysis in specific cases. This species-specific activity challenges the long-standing divide of antibiotics into bactericidal and bacteriostatic, and provides a possible explanation for the strong impact of macrolides on the gut microbiota composition in animals5-8 and humans9-11. To mitigate the collateral damage of macrolides and tetracyclines on gut commensals, we exploited the fact that drug combinations have species-specific outcomes in bacteria12 and sought marketed drugs, which could antagonize the activity of these antibiotics in abundant gut commensal species. By screening >1,000 drugs, we identified several such antidotes capable of protecting gut species from these antibiotics without compromising their activity against relevant pathogens. Altogether, this study broadens our understanding of antibiotic action on gut commensals, uncovers a previously unappreciated and broad bactericidal effect of prototypical bacteriostatic antibiotics on gut bacteria, and opens avenues for preventing the collateral damage caused by antibiotics on human gut commensals.
biorxiv microbiology 100-200-users 2020Quantifying the spatiotemporal dynamics of IRES versus Cap translation with single-molecule resolution in living cells, bioRxiv, 2020-01-10
ABSTRACTViruses use IRES sequences within their RNA to hijack translation machinery and thereby rapidly replicate in host cells. While this process has been extensively studied in bulk assays, the dynamics of hijacking at the single-molecule level remain unexplored in living cells. To achieve this, we developed a bicistronic biosensor encoding complementary repeat epitopes in two ORFs, one translated in a Cap-dependent manner and the other translated in an IRES-mediated manner. Using a pair of complementary probes that bind the epitopes co-translationally, our biosensor lights up in different colors depending on which ORF is being translated. In combination with single-molecule tracking and computational modeling, we measured the relative kinetics of Cap versus IRES translation and show (1) Two non-overlapping ORFs can be simultaneously translated within a single mRNA; (2) EMCV IRES-mediated translation sites recruit ribosomes less efficiently than Cap-dependent translation sites but are otherwise nearly indistinguishable, having similar mobilities, sizes, spatial distributions, and ribosomal initiation and elongation rates; (3) Both Cap-dependent and IRES-mediated ribosomes tend to stretch out translation sites; (4) Although the IRES recruits two to three times fewer ribosomes than the Cap in normal conditions, the balance shifts dramatically in favor of the IRES during oxidative and ER stresses that mimic viral infection; and (5) Translation of the IRES is enhanced by translation of the Cap, demonstrating upstream translation can positively impact the downstream translation of a non-overlapping ORF. With the ability to simultaneously quantify two distinct translation mechanisms in physiologically relevant live-cell environments, we anticipate bicistronic biosensors like the one we developed here will become powerful new tools to dissect both canonical and non-canonical translation dynamics with single-molecule precision.Graphical Abstract<jatsfig id=ufig1 position=float orientation=portrait fig-type=figure><jatsgraphic xmlnsxlink=httpwww.w3.org1999xlink xlinkhref=900829v1_ufig1 position=float orientation=portrait >
biorxiv biochemistry 0-100-users 2020Recently expanded clonal lineages of the rice blast fungus display distinct patterns of presenceabsence of effector genes, bioRxiv, 2020-01-10
AbstractBackgroundUnderstanding the mechanisms and timescales of plant pathogen outbreaks requires a detailed genome-scale analysis of their population history. The fungus Magnaporthe (Syn. Pyricularia) oryzae —the causal agent of blast disease of cereals— is among the most destructive plant pathogens to world agriculture and a major threat to the production of rice, wheat and other cereals. Although M. oryzae is a multihost pathogen that infects more than 50 species of cereals and grasses, all rice-infecting isolates belong to a single genetically defined lineage. Here, we combined multiple genomics datasets to reconstruct the genetic history of the rice-infecting lineage of M. oryzae based on 131 isolates from 21 countries.ResultsThe global population of the rice blast fungus consists of a diverse set of individuals and three well-defined genetic groups. Multiple population genetic tests revealed that the rice-infecting lineage of the blast fungus probably originated from a recombining diverse group in South East Asia followed by three independent clonal expansions that took place over the last ∼200 years. Patterns of allele sharing identified a subpopulation from the recombining diverse group that introgressed with one of the clonal lineages before its global expansion. Remarkably, the four genetic lineages of the rice blast fungus vary in the number and patterns of presenceabsence of candidate effector genes. In particular, clonal lineages carry a reduced repertoire of effector genes compared with the diverse group, and specific combinations of effector presenceabsence define each of the pandemic clonal lineages.ConclusionsOur analyses reconstruct the genetic history of the rice-infecting lineage of M. oryzae revealing three clonal lineages associated with rice blast pandemics. Each of these lineages displays a specific pattern of presenceabsence of effector genes that may have shaped their adaptation to the rice host and their evolutionary history.
biorxiv evolutionary-biology 0-100-users 2020Increased antibiotic susceptibility in Neisseria gonorrhoeae through adaptation to the cervical environment, bioRxiv, 2020-01-09
AbstractNeisseria gonorrhoeae is an urgent public health threat due to rapidly increasing incidence and antibiotic resistance. In contrast with the trend of increasing resistance, clinical isolates that have reverted to susceptibility regularly appear, prompting questions about which pressures compete with antibiotics to shape gonococcal evolution. Here, we used genome-wide association on the largest collection of N. gonorrhoeae isolates to date (n=4882) to identify loss-of-function (LOF) mutations in the efflux pump mtrCDE operon as a mechanism of increased antibiotic susceptibility and demonstrate that these mutations are overrepresented in cervical isolates relative to urethral isolates (odds ratio (OR) = 3.74, 95% CI [1.98-6.70]). In support of a model in which pump expression incurs a fitness cost in this niche, cervical isolates were also enriched relative to urethral isolates in LOF mutations in the mtrCDE activator mtrA (OR = 8.60, 95% CI [4.96-14.57]) and in farA, a subunit of the FarAB efflux pump (OR = 6.25, 95% CI [3.90-9.83]). In total, approximately 1 in 3 cervical isolates (36.4%) contained a LOF mutation in either the efflux pump components mtrC or farA or the activator mtrA. Our findings extend beyond N. gonorrhoeae to other Neisseria mtrC LOF mutations are rare (<1%) in the primarily nasopharyngeal-colonizing N. meningitidis in a collection of 14,798 genomes but enriched in a heterosexual urethritis-associated lineage (8.6%, p = 9.90×10-5), indicating that efflux pump downregulation contributes broadly to the adaptation of pathogenic Neisseria to the female urogenital tract. Overall, our findings highlight the impact of integrating microbial population genomics with host metadata and demonstrate how host environmental pressures can lead to increased antibiotic susceptibility.
biorxiv microbiology 0-100-users 2020