Synthesis of geological and comparative phylogeographic data point to climate, not mountain uplift, as driver of divergence across the Eastern Andean Cordillera, bioRxiv, 2020-01-15

AbstractAimTo evaluate the potential role of the orogeny of the Eastern Cordillera (EC) of the Colombian Andes and the Mérida Andes (MA) of Venezuela as drivers of vicariance between populations of 37 tetrapod lineages co-distributed on both flanks, through geological reconstruction and comparative phylogeographic analyses.LocationNorthwestern South AmericaMethodsWe first reviewed and synthesized published geological data on the timing of uplift for the EC-MA. We then combined newly generated mitochondrial DNA sequence data with published datasets to create a comparative phylogeographic dataset for 37 independent tetrapod lineages. We reconstructed time-calibrated molecular phylogenies for each lineage under Bayesian inference to estimate divergence times between lineages located East and West of the Andes. We performed a comparative phylogeographic analysis of all lineages within each class of tetrapod using hierarchical approximate Bayesian computation (hABC) to test for synchronous vicariance across the EC-MA. To evaluate the potential role of life history in explaining variation in divergence times among lineages, we evaluated 13 general linear models (GLM) containing up to six variables each (maximum elevation, range size, body length, thermoregulation, type of dispersal, and taxonomic class).ResultsOur synthesis of geological evidence suggested that the EC-MA reached significant heights by 38–33 million years ago (Ma) along most of its length, and we reject the oft-cited date of 2–5 Ma. Based on mtDNA divergence from 37 lineages, however, the median estimated divergence time across the EC-MA was 3.26 Ma (SE = 2.84) in amphibians, 2.58 Ma (SE = 1.81) in birds, 2.99 Ma (SE = 4.68) in reptiles and 1.43 Ma (SE = 1.23) in mammals. Using Bayes Factors, the hypothesis for a single temporal divergence interval containing synchronous divergence events was supported for mammals and but not supported for amphibians, non-avian reptiles, or birds. Among the six life-history variables tested, only thermoregulation successfully explained variation in divergence times (minimum AICc, R2 0.10), with homeotherms showing more recent divergence relative to poikilotherms.Main conclusionsOur results reject the hypothesis of the rise Andean Cordillera as driver of vicariance of lowland population because divergence dates are too recent and too asynchronous. We discuss alternative explanations, including dispersal through mountain passes, and suggest that changes in the climatic conditions during the Pliocene and Pleistocene interacted with tetrapod physiology, promoting older divergences in amphibians and reptiles relative to mammals and birds on an already established orogen.

biorxiv evolutionary-biology 0-100-users 2020

Recently expanded clonal lineages of the rice blast fungus display distinct patterns of presenceabsence of effector genes, bioRxiv, 2020-01-10

AbstractBackgroundUnderstanding the mechanisms and timescales of plant pathogen outbreaks requires a detailed genome-scale analysis of their population history. The fungus Magnaporthe (Syn. Pyricularia) oryzae —the causal agent of blast disease of cereals— is among the most destructive plant pathogens to world agriculture and a major threat to the production of rice, wheat and other cereals. Although M. oryzae is a multihost pathogen that infects more than 50 species of cereals and grasses, all rice-infecting isolates belong to a single genetically defined lineage. Here, we combined multiple genomics datasets to reconstruct the genetic history of the rice-infecting lineage of M. oryzae based on 131 isolates from 21 countries.ResultsThe global population of the rice blast fungus consists of a diverse set of individuals and three well-defined genetic groups. Multiple population genetic tests revealed that the rice-infecting lineage of the blast fungus probably originated from a recombining diverse group in South East Asia followed by three independent clonal expansions that took place over the last ∼200 years. Patterns of allele sharing identified a subpopulation from the recombining diverse group that introgressed with one of the clonal lineages before its global expansion. Remarkably, the four genetic lineages of the rice blast fungus vary in the number and patterns of presenceabsence of candidate effector genes. In particular, clonal lineages carry a reduced repertoire of effector genes compared with the diverse group, and specific combinations of effector presenceabsence define each of the pandemic clonal lineages.ConclusionsOur analyses reconstruct the genetic history of the rice-infecting lineage of M. oryzae revealing three clonal lineages associated with rice blast pandemics. Each of these lineages displays a specific pattern of presenceabsence of effector genes that may have shaped their adaptation to the rice host and their evolutionary history.

biorxiv evolutionary-biology 0-100-users 2020

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo