A Multi-State Birth-Death model for Bayesian inference of lineage-specific birth and death rates, bioRxiv, 2018-10-11

AbstractHeterogeneous populations can lead to important differences in birth and death rates across a phylogeny Taking this heterogeneity into account is thus critical to obtain accurate estimates of the underlying population dynamics. We present a new multi-state birth-death model (MSBD) that can estimate lineage-specific birth and death rates. For species phylogenies, this corresponds to estimating lineage-dependent speciation and extinction rates. Contrary to existing models, we do not require a prior hypothesis on a trait driving the rate differences and we allow the same rates to be present in different parts of the phylogeny. Using simulated datasets, we show that the MSBD model can reliably infer the presence of multiple evolutionary regimes, their positions in the tree, and the birth and death rates associated with each. We also present a re-analysis of two empirical datasets and compare the results obtained by MSBD and by the existing software BAMM. The MSBD model is implemented as a package in the Bayesian inference software BEAST2, which allows joint inference of the phylogeny and the model parameters.Significance statementPhylogenetic trees can inform about the underlying speciation and extinction processes within a species clade. Many different factors, for instance environmental changes or morphological changes, can lead to differences in macroevolutionary dynamics within a clade. We present here a new multi-state birth-death (MSBD) model that can detect these differences and estimate both the position of changes in the tree and the associated macroevolutionary parameters. The MSBD model does not require a prior hypothesis on which trait is driving the changes in dynamics and is thus applicable to a wide range of datasets. It is implemented as an extension to the existing framework BEAST2.

biorxiv evolutionary-biology 0-100-users 2018

Bayesian Estimation of Species Divergence Times Using Correlated Quantitative Characters, bioRxiv, 2018-10-11

Discrete morphological data have been widely used to study species evolution, but the use of quantitative (or continuous) morphological characters is less common. Here, we implement a Bayesian method to estimate species divergence times using quantitative characters. Quantitative character evolution is modelled using Brownian diffusion with character correlation and character variation within populations. Through simulations, we demonstrate that ignoring the population variation (or population noise) and the correlation among characters leads to biased estimates of divergence times and rate, especially if the correlation and population noise are high. We apply our new method to the analysis of quantitative characters (cranium landmarks) and molecular data from carnivoran mammals. Our results show that time estimates are affected by whether the correlations and population noise are accounted for or ignored in the analysis. The estimates are also affected by the type of data analysed, with analyses of morphological characters only, molecular data only, or a combination of both; showing noticeable differences among the time estimates. Rate variation of morphological characters among the carnivoran species appears to be very high, with Bayesian model selection indicating that the independent-rates model fits the morphological data better than the autocorrelated-rates model. We suggest that using morphological continuous characters, together with molecular data, can bring a new perspective to the study of species evolution. Our new model is implemented in the MCMCtree computer program for Bayesian inference of divergence times.

biorxiv evolutionary-biology 0-100-users 2018

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo