Observing the Cell in Its Native State Imaging Subcellular Dynamics in Multicellular Organisms, bioRxiv, 2018-01-09
AbstractTrue physiological imaging of subcellular dynamics requires studying cells within their parent organisms, where all the environmental cues that drive gene expression, and hence the phenotypes we actually observe, are present. A complete understanding also requires volumetric imaging of the cell and its surroundings at high spatiotemporal resolution without inducing undue stress on either. We combined lattice light sheet microscopy with two-channel adaptive optics to achieve, across large multicellular volumes, noninvasive aberration-free imaging of subcellular processes, including endocytosis, organelle remodeling during mitosis, and the migration of axons, immune cells, and metastatic cancer cells in vivo. The technology reveals the phenotypic diversity within cells across different organisms and developmental stages, and may offer insights into how cells harness their intrinsic variability to adapt to different physiological environments.One Sentence SummaryCombining lattice light sheet microscopy with adaptive optics enables high speed, high resolution in vivo 3D imaging of dynamic processes inside cells under physiological conditions within their parent organisms.
biorxiv cell-biology 500+-users 2018Speciation genes are more likely to have discordant gene trees, bioRxiv, 2018-01-09
AbstractSpeciation genes are responsible for reproductive isolation between species. By directly participating in the process of speciation, the genealogies of isolating loci have been thought to more faithfully represent species trees. The unique properties of speciation genes may provide valuable evolutionary insights and help determine the true history of species divergence. Here, we formally analyze whether genealogies from loci participating in Dobzhansky-Muller (DM) incompatibilities are more likely to be concordant with the species tree under incomplete lineage sorting (ILS). Individual loci differ stochastically from the true history of divergence with a predictable frequency due to ILS, and these expectations—combined with the DM model of intrinsic reproductive isolation from epistatic interactions—can be used to examine the probability of concordance at isolating loci. Contrary to existing verbal models, we find that reproductively isolating loci that follow the DM model are often more likely to have discordant gene trees. These results are dependent on the pattern of isolation observed between three species, the time between speciation events, and the time since the last speciation event. Results supporting a higher probability of discordance are found for both derived-derived and derived-ancestral DM pairs, and regardless of whether incompatibilities are allowed or prohibited from segregating in the same population. Our overall results suggest that DM loci are unlikely to be especially useful for reconstructing species relationships, even in the presence of gene flow between incipient species, and may in fact be positively misleading.
biorxiv evolutionary-biology 100-200-users 2018Visualization of PRC2-Dinucleosome Interactions Leading to Epigenetic Repression, bioRxiv, 2018-01-09
AbstractEpigenetic regulation is mediated by protein complexes that couple recognition of chromatin marks to activity or recruitment of chromatin-modifying enzymes. Polycomb repressive complex 2 (PRC2), a gene silencer that methylates lysine 27 of histone H3, is stimulated upon recognition of its own catalytic product, and has been shown to be more active on dinucleosomes than H3 tails or single nucleosomes. These properties likely facilitate local H3K27me23 spreading causing heterochromatin formation and gene repression. Here, cryo-EM reconstructions of human PRC2 bound to dinucleosomes show how a single PRC2, interacting with nucleosomal DNA, precisely positions the H3 tails to recognize a H3K27me3 mark in one nucleosome and is stimulated to modify a neighboring nucleosome. The geometry of the PRC2-DNA interactions allow PRC2 to tolerate different dinucleosome geometries due to varying lengths of the linker DNA. Our structures are the first to illustrate how an epigenetic regulator engages with a complex chromatin substrate.
biorxiv biophysics 0-100-users 2018Genome-wide signals of drift and local adaptation during rapid lineage divergence in a songbird, bioRxiv, 2018-01-08
AbstractThe formation of independent evolutionary lineages involves neutral and selective factors, and understanding their relative roles in population divergence is a fundamental goal of speciation research. Correlations between allele frequencies and environmental variability can reveal the role of selection, yet the relative contribution of drift can be difficult to establish. Recently diversified systems such as that of the Oregon junco (Aves Emberizidae) of western North America provide ideal scenarios to apply genetic-environment association analyses (GEA) while controlling for population structure. Genome-wide SNP loci analyses revealed marked genetic structure consisting of differentiated populations in isolated, dry southern mountain ranges, and more admixed recently expanded populations in humid northern latitudes. We used correlations between genomic and environmental variance to test for three specific modes of evolutionary divergence (i) drift in geographic isolation, (ii) differentiation along continuous selective gradients, and (iii) isolation by adaptation. We found evidence of strong drift in southern mountains, but also signals of local adaptation in several populations, driven by temperature, precipitation, elevation and vegetation, especially when controlling for population history. We identified numerous variants under selection scattered across the genome, suggesting that local adaptation can promote rapid differentiation over short periods when acting over multiple independent loci.
biorxiv evolutionary-biology 0-100-users 2018Inferring Species Trees Using Integrative Models of Species Evolution, bioRxiv, 2018-01-08
AbstractBayesian methods can be used to accurately estimate species tree topologies, times and other parameters, but only when the models of evolution which are available and utilized sufficiently account for the underlying evolutionary processes. Multispecies coalescent (MSC) models have been shown to accurately account for the evolution of genes within species in the absence of strong gene flow between lineages, and fossilized birth-death (FBD) models have been shown to estimate divergence times from fossil data in good agreement with expert opinion. Until now dating analyses using the MSC have been based on a fixed clock or informally derived node priors instead of the FBD. On the other hand, dating analyses using an FBD process have concatenated all gene sequences and ignored coalescence processes. To address these mirror-image deficiencies in evolutionary models, we have developed an integrative model of evolution which combines both the FBD and MSC models. By applying concatenation and the MSC (without employing the FBD process) to an exemplar data set consisting of molecular sequence data and morphological characters from the dog and fox subfamily Caninae, we show that concatenation causes predictable biases in estimated branch lengths. We then applied concatenation using the FBD process and the combined FBD-MSC model to show that the same biases are still observed when the FBD process is employed. These biases can be avoided by using the FBD-MSC model, which coherently models fossilization and gene evolution, and does not require an a priori substitution rate estimate to calibrate the molecular clock. We have implemented the FBD-MSC in a new version of StarBEAST2, a package developed for the BEAST2 phylogenetic software.
biorxiv evolutionary-biology 0-100-users 2018NanoAmpli-Seq A workflow for amplicon sequencing for mixed microbial communities on the nanopore sequencing platform, bioRxiv, 2018-01-08
AbstractBackgroundAmplicon sequencing on Illumina sequencing platforms leverages their deep sequencing and multiplexing capacity, but is limited in genetic resolution due to short read lengths. While Oxford Nanopore or Pacific Biosciences platforms overcome this limitation, their application has been limited due to higher error rates or smaller data output.ResultsIn this study, we introduce an amplicon sequencing workflow, i.e., NanoAmpli-Seq, that builds on Intramolecular-ligated Nanopore Consensus Sequencing (INC-Seq) approach and demonstrate its application for full-length 16S rRNA gene sequencing. NanoAmpli-Seq includes vital improvements to the aforementioned protocol that reduces sample-processing time while significantly improving sequence accuracy. The developed protocol includes chopSeq software for fragmentation and read orientation correction of INC-Seq consensus reads while nanoClust algorithm was designed for read partitioning-based de novo clustering and within cluster consensus calling to obtain full-length 16S rRNA gene sequences.ConclusionsNanoAmpli-Seq accurately estimates the diversity of tested mock communities with average sequence accuracy of 99.5% for 2D and 1D2 sequencing on the nanopore sequencing platform. Nearly all residual errors in NanoAmpli-Seq sequences originate from deletions in homopolymer regions, indicating that homopolymer aware basecalling or error correction may allow for sequencing accuracy comparable to short-read sequencing platforms.
biorxiv microbiology 100-200-users 2018